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Epigenetik 

•  Development 

•  Tissue-specific gene expression 

•  Adopting to environmental factors 

•  Memory 

•  Aging 

•  Disease (diabetes, Alzheimer‘s, cancer, ...) 

Epigenetics 

Epigenetic modifications  
•  alter gene expression without affecting the DNA sequence 
•  are transmitted to daughter cells 
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Morris maze and hippocampal long-term potentiation17. Overall, these 
various results suggest that DNA methylation is dynamically regulated 
in the adult CNS in response to experience and that this cellular mecha-
nism is a crucial step in memory formation. It should be noted that 
these findings suggest that memory formation involves both increased 
methylation at memory suppressor genes and decreased methylation 
at memory promoting genes. Thus, memory function might be driven 
by either hypermethylation or hypomethylation. Overall, these obser-
vations suggest that DNMT activity is necessary for memory and that 
DNA methylation may work in concert with histone modifications, 
which have previously been implicated in memory formation and stor-
age in the adult rat hippocampus and cortex18,20–24.

However, three unanticipated observations arose as part of these 
studies as well. First, the changes in hippocampal DNA methyla-
tion reversed and returned to control levels within 24 h of training. 
Thus, the duration of this reaction is hardly compatible with the long- 
lasting mnemogenic reaction discussed above. Second, memory was 
also associated with demethylation of DNA at some gene loci, which 
was unexpected because of the chemical strength of the MeC DNA 
modification. Third, the nucleoside analog DNMT inhibitors that block 
memory formation (zebularine and 5-aza-2 -deoxycytidine) triggered 
DNA demethylation as expected, but these agents require chemical 
incorporation into DNA to be effective. This would normally occur as 
part of DNA replication in dividing cells. However, the vast majority 
of cells in the mature CNS do not divide. How then could these agents 
work? These three considerations indicate that there must be a DNA 
demethylating activity for the observations to be true. This was not a 
trivial consideration; even the existence of a DNA demethylase has  
been controversial25–27, despite several recent reports that DNA meth-
ylation status can cycle at relatively short time scales28,29. Currently, the 
molecular basis of this mysterious demethylating capacity is unclear.

The mysterious demethylating mechanism
Given that the MeC chemical bond is extremely 
stable, direct demethylation is highly unlikely. 
An alternative model for DNA demethylation 
was recently proposed10,30 (Fig. 2). This model 
involves the conversion of MeC to thymine  
through deamination or loss of the amine group. 
Next, following conventional BER, a nonmeth-
ylated cytosine is re-synthesized. The precise 
mechanisms underlying this catalysis are con-
troversial31,32. However, it is thought that the 
growth arrest and DNA damage–inducible 
protein 45 (GADD45) family of proteins 
 (specifically GADD45 ) could participate in 
each step of this process, thereby catalyzing DNA 

demethylation10,30. Moreover, it appears that DNMTs may be involved in 
deamination of MeC in a strand-specific manner29, which would impli-
cate them in both the methylation and demethylation of DNA.

Although it remains unclear whether this model could account for 
demethylation of both DNA strands, this mechanism would enable 
selective demethylation at specific sites in DNA, allowing transience 
of methylation, active demethylation and a route of entry for the 
nucleoside analog inhibitors of DNMTs into the DNA of nondividing 
cells. Specifically, after becoming phosphorylated by cytidine kinases, 
prodrugs such as 5-aza-2 -deoxycytidine or zebularine may operate 
by substituting for cytosine during BER. This altered base is resistant 
to methylation and traps DNMTs33, resulting in both the demethyla-
tion of the newly repaired strand and a decrease in DNMT activity. 
This provides a satisfying explanation for the results described above: 
a mechanism for reversal of DNA demethylation, a mechanism for 
active demethylation in nondividing cells and a molecular basis for 
nucleoside DNMT inhibitors to act in the mature CNS.

Refutation of the initial hypothesis
The discovery of the transience of DNA methylation via these DNA 
demethylating and remethylating processes negates the broad initial 
hypothesis that motivated the studies. This initial hypothesis was that 
the self-perpetuating methylation reaction would underlie memory 
maintenance. However, these studies actually demonstrated plasticity 
of DNA methylation in the mature CNS, suggesting that there were 
previously unknown mechanisms, such as experience-dependent 
DNA demethylation, and that chemical modification of DNA was 
involved in memory formation. However, these results refute the idea 
that these mechanisms act as a long-term molecular storage device, 
suggesting that DNA demethylation is a much more dynamic process 
than previously thought (at least in the hippocampus).

Figure 1 DNA methylation. (a) Inside a cell 
nucleus, DNA is wrapped tightly around an 
octamer of highly basic histone proteins to 
form chromatin. Epigenetic modifications 
can occur at histone tails or directly at DNA 
via DNA methylation. (b) DNA methylation 
occurs at cytosine bases when a methyl 
group is added at the 5  position on the 
pyrimidine ring by a DNMT. (c) Two types of 
DNMTs initiate DNA methylation. De novo 
DNMTs methylate previously nonmethylated 
cytosines, whereas maintenance DNMTs 
methylate hemi-methylated DNA at the 
complementary strand.
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in the adult CNS in response to experience and that this cellular mecha-
nism is a crucial step in memory formation. It should be noted that 
these findings suggest that memory formation involves both increased 
methylation at memory suppressor genes and decreased methylation 
at memory promoting genes. Thus, memory function might be driven 
by either hypermethylation or hypomethylation. Overall, these obser-
vations suggest that DNMT activity is necessary for memory and that 
DNA methylation may work in concert with histone modifications, 
which have previously been implicated in memory formation and stor-
age in the adult rat hippocampus and cortex18,20–24.

However, three unanticipated observations arose as part of these 
studies as well. First, the changes in hippocampal DNA methyla-
tion reversed and returned to control levels within 24 h of training. 
Thus, the duration of this reaction is hardly compatible with the long- 
lasting mnemogenic reaction discussed above. Second, memory was 
also associated with demethylation of DNA at some gene loci, which 
was unexpected because of the chemical strength of the MeC DNA 
modification. Third, the nucleoside analog DNMT inhibitors that block 
memory formation (zebularine and 5-aza-2 -deoxycytidine) triggered 
DNA demethylation as expected, but these agents require chemical 
incorporation into DNA to be effective. This would normally occur as 
part of DNA replication in dividing cells. However, the vast majority 
of cells in the mature CNS do not divide. How then could these agents 
work? These three considerations indicate that there must be a DNA 
demethylating activity for the observations to be true. This was not a 
trivial consideration; even the existence of a DNA demethylase has  
been controversial25–27, despite several recent reports that DNA meth-
ylation status can cycle at relatively short time scales28,29. Currently, the 
molecular basis of this mysterious demethylating capacity is unclear.

The mysterious demethylating mechanism
Given that the MeC chemical bond is extremely 
stable, direct demethylation is highly unlikely. 
An alternative model for DNA demethylation 
was recently proposed10,30 (Fig. 2). This model 
involves the conversion of MeC to thymine  
through deamination or loss of the amine group. 
Next, following conventional BER, a nonmeth-
ylated cytosine is re-synthesized. The precise 
mechanisms underlying this catalysis are con-
troversial31,32. However, it is thought that the 
growth arrest and DNA damage–inducible 
protein 45 (GADD45) family of proteins 
 (specifically GADD45 ) could participate in 
each step of this process, thereby catalyzing DNA 

demethylation10,30. Moreover, it appears that DNMTs may be involved in 
deamination of MeC in a strand-specific manner29, which would impli-
cate them in both the methylation and demethylation of DNA.

Although it remains unclear whether this model could account for 
demethylation of both DNA strands, this mechanism would enable 
selective demethylation at specific sites in DNA, allowing transience 
of methylation, active demethylation and a route of entry for the 
nucleoside analog inhibitors of DNMTs into the DNA of nondividing 
cells. Specifically, after becoming phosphorylated by cytidine kinases, 
prodrugs such as 5-aza-2 -deoxycytidine or zebularine may operate 
by substituting for cytosine during BER. This altered base is resistant 
to methylation and traps DNMTs33, resulting in both the demethyla-
tion of the newly repaired strand and a decrease in DNMT activity. 
This provides a satisfying explanation for the results described above: 
a mechanism for reversal of DNA demethylation, a mechanism for 
active demethylation in nondividing cells and a molecular basis for 
nucleoside DNMT inhibitors to act in the mature CNS.

Refutation of the initial hypothesis
The discovery of the transience of DNA methylation via these DNA 
demethylating and remethylating processes negates the broad initial 
hypothesis that motivated the studies. This initial hypothesis was that 
the self-perpetuating methylation reaction would underlie memory 
maintenance. However, these studies actually demonstrated plasticity 
of DNA methylation in the mature CNS, suggesting that there were 
previously unknown mechanisms, such as experience-dependent 
DNA demethylation, and that chemical modification of DNA was 
involved in memory formation. However, these results refute the idea 
that these mechanisms act as a long-term molecular storage device, 
suggesting that DNA demethylation is a much more dynamic process 
than previously thought (at least in the hippocampus).

Figure 1 DNA methylation. (a) Inside a cell 
nucleus, DNA is wrapped tightly around an 
octamer of highly basic histone proteins to 
form chromatin. Epigenetic modifications 
can occur at histone tails or directly at DNA 
via DNA methylation. (b) DNA methylation 
occurs at cytosine bases when a methyl 
group is added at the 5  position on the 
pyrimidine ring by a DNMT. (c) Two types of 
DNMTs initiate DNA methylation. De novo 
DNMTs methylate previously nonmethylated 
cytosines, whereas maintenance DNMTs 
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these findings suggest that memory formation involves both increased 
methylation at memory suppressor genes and decreased methylation 
at memory promoting genes. Thus, memory function might be driven 
by either hypermethylation or hypomethylation. Overall, these obser-
vations suggest that DNMT activity is necessary for memory and that 
DNA methylation may work in concert with histone modifications, 
which have previously been implicated in memory formation and stor-
age in the adult rat hippocampus and cortex18,20–24.
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lasting mnemogenic reaction discussed above. Second, memory was 
also associated with demethylation of DNA at some gene loci, which 
was unexpected because of the chemical strength of the MeC DNA 
modification. Third, the nucleoside analog DNMT inhibitors that block 
memory formation (zebularine and 5-aza-2 -deoxycytidine) triggered 
DNA demethylation as expected, but these agents require chemical 
incorporation into DNA to be effective. This would normally occur as 
part of DNA replication in dividing cells. However, the vast majority 
of cells in the mature CNS do not divide. How then could these agents 
work? These three considerations indicate that there must be a DNA 
demethylating activity for the observations to be true. This was not a 
trivial consideration; even the existence of a DNA demethylase has  
been controversial25–27, despite several recent reports that DNA meth-
ylation status can cycle at relatively short time scales28,29. Currently, the 
molecular basis of this mysterious demethylating capacity is unclear.

The mysterious demethylating mechanism
Given that the MeC chemical bond is extremely 
stable, direct demethylation is highly unlikely. 
An alternative model for DNA demethylation 
was recently proposed10,30 (Fig. 2). This model 
involves the conversion of MeC to thymine  
through deamination or loss of the amine group. 
Next, following conventional BER, a nonmeth-
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mechanisms underlying this catalysis are con-
troversial31,32. However, it is thought that the 
growth arrest and DNA damage–inducible 
protein 45 (GADD45) family of proteins 
 (specifically GADD45 ) could participate in 
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demethylation10,30. Moreover, it appears that DNMTs may be involved in 
deamination of MeC in a strand-specific manner29, which would impli-
cate them in both the methylation and demethylation of DNA.

Although it remains unclear whether this model could account for 
demethylation of both DNA strands, this mechanism would enable 
selective demethylation at specific sites in DNA, allowing transience 
of methylation, active demethylation and a route of entry for the 
nucleoside analog inhibitors of DNMTs into the DNA of nondividing 
cells. Specifically, after becoming phosphorylated by cytidine kinases, 
prodrugs such as 5-aza-2 -deoxycytidine or zebularine may operate 
by substituting for cytosine during BER. This altered base is resistant 
to methylation and traps DNMTs33, resulting in both the demethyla-
tion of the newly repaired strand and a decrease in DNMT activity. 
This provides a satisfying explanation for the results described above: 
a mechanism for reversal of DNA demethylation, a mechanism for 
active demethylation in nondividing cells and a molecular basis for 
nucleoside DNMT inhibitors to act in the mature CNS.

Refutation of the initial hypothesis
The discovery of the transience of DNA methylation via these DNA 
demethylating and remethylating processes negates the broad initial 
hypothesis that motivated the studies. This initial hypothesis was that 
the self-perpetuating methylation reaction would underlie memory 
maintenance. However, these studies actually demonstrated plasticity 
of DNA methylation in the mature CNS, suggesting that there were 
previously unknown mechanisms, such as experience-dependent 
DNA demethylation, and that chemical modification of DNA was 
involved in memory formation. However, these results refute the idea 
that these mechanisms act as a long-term molecular storage device, 
suggesting that DNA demethylation is a much more dynamic process 
than previously thought (at least in the hippocampus).

Figure 1 DNA methylation. (a) Inside a cell 
nucleus, DNA is wrapped tightly around an 
octamer of highly basic histone proteins to 
form chromatin. Epigenetic modifications 
can occur at histone tails or directly at DNA 
via DNA methylation. (b) DNA methylation 
occurs at cytosine bases when a methyl 
group is added at the 5  position on the 
pyrimidine ring by a DNMT. (c) Two types of 
DNMTs initiate DNA methylation. De novo 
DNMTs methylate previously nonmethylated 
cytosines, whereas maintenance DNMTs 
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cancer, including global changes in DNA methylation pat-
terns [13]. CpG island hypermethylation is common and
often associated with the silencing of tumor suppressor
genes and downstream signaling pathways [13–16]
(Figure 1). Whereas CpG islands become susceptible to
DNA methyltransferase activity, CpG-poor regions under-
go hypomethylation during transformation, resulting in an
overall decrease in total genomic 5MeC in cancer cells
[13,14,16] (Figure 1). The exception includes CpG-poor,
distal enhancers that are unmethylated in normal cells
but often gain methylation [17,18] in cancer cells
(Figure 1). Global hypomethylation in cancer is thought
to contribute to genomic instability and aberrant expres-
sion of some oncogenes, such as MYC [19] (Figure 1), which
results in deregulation of cellular processes.

The opportunity now exists to provide more compre-
hensive maps of cancer DNA methylomes using whole
genome-based technologies [20–25]. These technologies
will help provide greater insight into the underlying
mechanism and location of cancer-specific methylation
changes at individual CpG residues and may aid in further
identification of potential epigenetic-based cancer bio-
markers.

Genome-wide methylome technologies
DNA methylation analyses were initially restricted to
relatively localized CpG-rich regions of the genome,
but several methods have now been developed to
map DNA methylation on a genomic scale. Here, we
describe four different genome-wide approaches (summa-
rized in Figure 2): whole-genome bisulfite sequencing
(WGBS); methyl-binding domain capture sequencing

(MBDCap-Seq); reduced-representation-bisulfite-se-
quencing (RRBS); and Infinium HumanMethylation450
BeadChips (HM450, Illumina). We discuss some of the
requirements, merits, and challenges that should be con-
sidered when choosing a methylome technology to ensure
that it will be informative.

Whole-genome bisulfite sequencing
Bisulfite-sequencing, which was developed in 1992–1994
by Frommer and Clark [26,27], is considered the ‘gold
standard’ for DNA methylation analyses because CpG
methylation can be measured at single-base resolution.
DNA is treated with sodium bisulfite to convert cytosine to
uracil, which is converted to thymine after PCR amplifica-
tion, whereas 5MeC residues are not converted and remain
as cytosines [27]. Clonal sequencing of bisulfite-converted
PCR products from a single genomic region have typified
the approach until recently; however, the development of
high-throughput sequencing now facilitates the generation
of genome-wide, single-base resolution DNA methylation
maps from bisulfite-converted DNA (Figure 2). To perform
WGBS, genomic DNA (1–5 mg) is sheared and ligated to
methylated adaptors before size selection and bisulfite
conversion, followed by library construction and high-
throughput sequencing (Figure 2). More than 500 million
paired-end reads are required to achieve approximately
30-fold coverage of the 28 217 009 CpG sites on autosomes
and sex chromosomes; typically approximately 95% of all
CpG sites in the genome can be assessed using WBGS. The
first methylome was generated from the Arabidopsis thali-
ana genome in 2008 [28,29], and the first human methy-
lomes of embryonic stem cells and IMR90 fibroblasts were
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Figure 1. DNA methylation and (de)regulation of the genome. A schematic representation of the methylome and a summary of major changes that occur in cancer cells. CpG
islands are often associated with gene promoters and are resistant to DNA methylation in normal cells (A) (green). Gene expression can occur, and is highly correlated with high
levels of gene body (genic) methylation. CpG-poor regions (intergenic), with the exception of enhancers, are typically methylated in normal cells. Similarly, CpG-poor promoters
are silenced by DNA methylation and exhibit a closed chromatin structure unless gene expression is required (tissue specific). In cancer cells (B), CpG islands are prone to DNA
hypermethylation, which results in aberrant gene silencing (e.g., of tumor suppressor genes). Concomitant hypomethylation of intergenic regions and CpG-poor promoters
contributes to genomic instability and aberrant gene expression (e.g., of oncogenes), respectively. White circle, unmethylated CpG; black circle, methylated CpG.
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often associated with the silencing of tumor suppressor
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go hypomethylation during transformation, resulting in an
overall decrease in total genomic 5MeC in cancer cells
[13,14,16] (Figure 1). The exception includes CpG-poor,
distal enhancers that are unmethylated in normal cells
but often gain methylation [17,18] in cancer cells
(Figure 1). Global hypomethylation in cancer is thought
to contribute to genomic instability and aberrant expres-
sion of some oncogenes, such as MYC [19] (Figure 1), which
results in deregulation of cellular processes.

The opportunity now exists to provide more compre-
hensive maps of cancer DNA methylomes using whole
genome-based technologies [20–25]. These technologies
will help provide greater insight into the underlying
mechanism and location of cancer-specific methylation
changes at individual CpG residues and may aid in further
identification of potential epigenetic-based cancer bio-
markers.

Genome-wide methylome technologies
DNA methylation analyses were initially restricted to
relatively localized CpG-rich regions of the genome,
but several methods have now been developed to
map DNA methylation on a genomic scale. Here, we
describe four different genome-wide approaches (summa-
rized in Figure 2): whole-genome bisulfite sequencing
(WGBS); methyl-binding domain capture sequencing

(MBDCap-Seq); reduced-representation-bisulfite-se-
quencing (RRBS); and Infinium HumanMethylation450
BeadChips (HM450, Illumina). We discuss some of the
requirements, merits, and challenges that should be con-
sidered when choosing a methylome technology to ensure
that it will be informative.

Whole-genome bisulfite sequencing
Bisulfite-sequencing, which was developed in 1992–1994
by Frommer and Clark [26,27], is considered the ‘gold
standard’ for DNA methylation analyses because CpG
methylation can be measured at single-base resolution.
DNA is treated with sodium bisulfite to convert cytosine to
uracil, which is converted to thymine after PCR amplifica-
tion, whereas 5MeC residues are not converted and remain
as cytosines [27]. Clonal sequencing of bisulfite-converted
PCR products from a single genomic region have typified
the approach until recently; however, the development of
high-throughput sequencing now facilitates the generation
of genome-wide, single-base resolution DNA methylation
maps from bisulfite-converted DNA (Figure 2). To perform
WGBS, genomic DNA (1–5 mg) is sheared and ligated to
methylated adaptors before size selection and bisulfite
conversion, followed by library construction and high-
throughput sequencing (Figure 2). More than 500 million
paired-end reads are required to achieve approximately
30-fold coverage of the 28 217 009 CpG sites on autosomes
and sex chromosomes; typically approximately 95% of all
CpG sites in the genome can be assessed using WBGS. The
first methylome was generated from the Arabidopsis thali-
ana genome in 2008 [28,29], and the first human methy-
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levels of gene body (genic) methylation. CpG-poor regions (intergenic), with the exception of enhancers, are typically methylated in normal cells. Similarly, CpG-poor promoters
are silenced by DNA methylation and exhibit a closed chromatin structure unless gene expression is required (tissue specific). In cancer cells (B), CpG islands are prone to DNA
hypermethylation, which results in aberrant gene silencing (e.g., of tumor suppressor genes). Concomitant hypomethylation of intergenic regions and CpG-poor promoters
contributes to genomic instability and aberrant gene expression (e.g., of oncogenes), respectively. White circle, unmethylated CpG; black circle, methylated CpG.
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•  The epigenetic state determines cell fate 

•  Epigenetic deregulation can drive tumorigenesis (oncogenes é & tumor-suppressors ê) 

DNA methylation in malignant transformation 
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Nephew & Huang, Cancer Lett. 2003 

DNA Promoter Hypermethylierung als frühes 
(auslösendes?) Ereignis der Krebsentstehung 

Leukemia / MDS (Sonnet et al., Genome Med. 2014) 

CLL (Chen et al., PNAS 2009) 

Prostate (Kinney et al., MCR 2008) 

Promoter hypermethylation in malignant transformation 

Breast  Prostate 
Colon  Lung 
MDS  Leukemia 

Fay et al., Expert Opin. Ther. Targets (2005) 
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Promoter hypermethylation in a murine leukemia model 
(PU.1 hypomorphic mice) 

Sonnet et al., Genome Med 2014 
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Epigenetic Alterations in  
Acute Myeloid Leukemia (AML) 
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Epigenetic signatures in AML 

Figueroa et al., Cancer Cell 2010 
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Molecular landscape of AML 

TCGA, N Engl J Med 2013 
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•  Transcription factor fusions    18% 
•  PML-RARA, CBFB-MYH11, RUNX1-RUNX1T1, PICALM-MLLT10 

•  NPM1 mutations      27% 
•  Tumor suppressor genes     16% 

•  TP53, WT1, PHF6 

•  DNA methylation      44% 
•  DNMT3A, DNMT3B, DNMT1, TET1/2, IDH1/2 

•  Activated signaling      59% 
•  FLT3, KIT, other TK, other Ser-Thr kinases, PTPs 

•  Myeloid transcription factors    22% 
•  RUNX1, CEBPA, others 

•  Chromatin modifiers     30% 
•  MLL fusions, MLL-PTD, NUP98-NSD1, ASXL1, EZH2, KDM6A, others 

•  Cohesin complex      13% 
•  Spliceosome complex     14% 

Mutation categories in AML: an epigenetic disease!? 

TCGA, N Engl J Med 2013 
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Interactions between mutations 

Gale et al., J Clin Oncol 2015 

All patients 
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Interactions between mutations 

Gale et al., J Clin Oncol 2015 

NPM1-mutant NPM1-wildtype 



Page21 30.04.18 | 

Author 
Division 

30.04.18  PD Dr. Daniel Lipka 

Clonal evolution of AML 

Grimwade et al., Blood 2016 

Nature 2014 
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Clonal hematopoiesis & pre-leukemia 

Genovese et al., NEJM 2015 

CHIP – incidence with age CHIP is associated with 
hematologic malignancies 
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CHIP – underlying mutations 

Genovese et al., NEJM 2015 
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Clonal hematopoiesis & cardiovascular risk 

Jaiswal et al., NEJM 2017 
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Clonal hematopoiesis & cardiovascular risk 

Jaiswal et al., NEJM 2017 



Page26 30.04.18 | 

Author 
Division 

30.04.18 PD Dr. Daniel Lipka 

DNMT3A-R882H mutations 

DNMT3A-R882 mutations 
•  affect the methyltransferase domain of 

DNMT3A in  
•  present in ~60% AML cases and in 

pre-leukemia 
•  exhibits 80% reduction in 

methyltransferase activity 
•  ‘Dominant Negative’ mutation by 

inhibiting oligomerisation with wild-type 
DNMT3A 

 Yan et al., Nat Genet. 2011 
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Juvenile Myelomonocytic Leukemia: 
an epigenetic disease? 
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Juvenile myelomonocytic leukemia (JMML): Background 

-  Aggressive myeloid malignancy of early childhood  

-  Only allo-HSCT is potentially curative 

-  5-year EFS is 60% 

-  Hyperactivation of the Ras signaling pathway 
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JMML: Background 
 
•  DNA methylation so far only studied in few candidate gene loci  

–  DNA methylation status of promoter CGI from 14 genes associated with cancer or Ras signaling were 

studied in a large JMML cohort (n=127) 

–  Hypermethylated genes: BMP4, CALCA,CDKN2B, RARB  (+ RASA4)  

 

Olk-Batz et al., Blood 2011; Poetsch et al., Epigenetics 2014 
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Hypothesis 
 

JMML shows aberrant DNA methylation patterns 
which might serve to discriminate groups with different 

biologic behavior and provide insights into the 
pathogenesis and progression of the disease  
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Cell type composition is heterogeneous 

Lipka et al., Nat. Commun. 2017 

•  JMML discovery cohort (n=20) 
•  Methylome analysis: 450k Illumina Bead Chip Array 
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Strategy to identify disease-specific aberrant 
methylation events 

Lipka et al., Nat. Commun. 2017 
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Consensus clustering (k=2; discovery cohort) 

Lipka et al., Nat. Commun. 2017 



Page34 30.04.18 | 

Author 
Division 

30.04.18 PD Dr. Daniel Lipka 

Clustering of the JMML discovery cohort 

Lipka et al., Nat. Commun. 2017 

n=20 
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Validation cohort: three distinct molecular subtypes (n=147) 

Lipka et al., Nat. Commun. 2017 
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RAS-mediated deregulation of the 
epigenetic machinery in JMML? 

Lipka, Witte et al., Nat. Commun. 2017 

HM: 69% (11/16) > 1 lesion 
LM: 16% (3/19) > 1 lesion 
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High risk of relapse in the HM group 

Lipka et al., Nat. Commun. 2017 



Page38 30.04.18 | 

Author 
Division 

30.04.18 PD Dr. Daniel Lipka 

Univariate analysis 

Lipka et al., Nat. Commun. 2017 
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Multivariate analysis 

Lipka et al., Nat. Commun. 2017 

•  Cox model for relapse with TRM as competing event 
•  methylation group 
•  age at Dx 
•  sex 
•  PTPN11 mutation status (somatic only) 
•  platelet count 

•  Results: 
•  Methylation group 

•  HM vs. LM:   RR 10.9 [1.8-66.2] 
•  HM vs IM:   RR 4.8 [1.4-17.2] 
•  IM vs. LM:   RR 2.2 [0.4-11.2] 

•  PTPN11 mutation status 
•  PTPN11-mut vs. all other: RR 3.3 [1.2-8.9] 
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Take-home Message 

 
Complex epigenetic alterations contribute 
to tumor initiation and progression and are 

as important for the understanding of 
tumor biology as genetic alterations. 




