Hämatologie Heute 2018:

Epigenetics in Hematologic Malignancies

Priv.-Doz. Dr. Daniel Lipka Group Leader: Regulation of Cellular Differentiation Division of Epigenomics and Cancer Risk Factors d.lipka@dkfz.de

One genome, but over 200 cell and tissue types

Embryo

Juvenile

Adult

complexity

Monozygotic Twins: One genome but different fates

Different susceptibility to

- develop cancer
- psychiatric diseases
- develop asthma/allergies

Epigenetics

- Development
- Tissue-specific gene expression
- Adopting to environmental factors
- Memory
- Aging
- Disease (diabetes, Alzheimer's, cancer, ...)

Epigenetic modifications

- alter gene expression without affecting the DNA sequence
- are transmitted to daughter cells

Layers of Epigenetic Regulation

DNA methylation

DNA demethylation \rightarrow TET enzymes and 5hmC formation

DNA methylation in normal cells

- Epigenetic patterns regulate gene expression
 - <u>un</u>methylated promoter (+ intragenic methylation): gene expression
 - methylated promoter (+ <u>un</u>methylated gene body): gene expression ↓
- The epigenetic state determines cell fate

DNA methylation dynamics in normal hematopoiesis

Cabezas-Wallscheid et al., Cell Stem Cell 2014

DMRs predict downstream gene-expression patterns

Lipka et al., Cell Cycle 2014

Tissue-specific DNA methylation patterns: CUP classifier

Tissue of origin prediction for CUP samples:

possible for 188/216 samples (87%)

Fernandez, Genome Res, 2012

Moran et al., Lancet Oncol, 2016

DNA methylation in malignant transformation

- The epigenetic state determines cell fate
- Epigenetic deregulation can drive tumorigenesis (oncogenes ↑ & tumor-suppressors ↓)

Promoter hypermethylation in malignant transformation

Promoter hypermethylation in a murine leukemia model (PU.1 hypomorphic mice)

Epigenetic Alterations in Acute Myeloid Leukemia (AML)

Epigenetic signatures in AML

Figueroa et al., Cancer Cell 2010

Molecular landscape of AML

dkfz.

Mutation categories in AML: an epigenetic disease!?

Transcription factor fusions PML-RARA, CBFB-MYH11, RUNX1-RUNX1T1, PICALM-MLLT10	18%	
NPM1 mutations	27%	
Tumor suppressor genes TP53, WT1, PHF6	16%	
DNA methylation • DNMT3A, DNMT3B, DNMT1, TET1/2, IDH1/2	44%	
Activated signaling FLT3, KIT, other TK, other Ser-Thr kinases, PTPs	59%	
Myeloid transcription factors RUNX1, CEBPA, others	22%	
Chromatin modifiers MLL fusions, MLL-PTD, NUP98-NSD1, ASXL1, EZH2, KDM6A, others 	30%	
Cohesin complex	13%	
Spliceosome complex	14%	TCGA, N Engl J Med 2013

dkfz.

Interactions between mutations

All patients

Gale et al., J Clin Oncol 2015

Interactions between mutations

30.04.18 PD Dr. Daniel Lipka

Gale et al., J Clin Oncol 2015

Clonal evolution of AML

ARTICLE

doi:10.1038/nature13038

Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia

Liran I. Shlush¹*, Sasan Zandi¹*, Amanda Mitchell¹, Weihsu Claire Chen¹, Joseph M. Brandwein^{1,2,3}, Vikas Gupta^{1,2,3}, James A. Kennedy¹, Aaron D. Schimmer^{1,2,3,4}, Andre C. Schuh^{1,2,3}, Karen W. Yee^{1,2,3}, Jessica L. McLeod¹, Monica Doedens¹, Jessie J. F. Medeiros¹, Rene Marke^{1,5}, Hyeoung Joon Kim⁶, Kwon Lee⁶, John D. McPherson^{4,7}, Thomas J. Hudson^{4,7,8}, The HALT Pan-Leukemia Gene Panel Consortium[†], Andrew M. K. Brown⁷, Fouad Yousif⁷, Quang M. Trinh⁷, Lincoln D. Stein^{7,8}, Mark D. Minden^{1,2,3,4}, Jean C. Y. Wang^{1,2,3} & John E. Dick^{1,8}

Nature 2014

Grimwade et al., Blood 2016

Clonal hematopoiesis & pre-leukemia

CHIP – incidence with age

CHIP is associated with hematologic malignancies

Genovese et al., NEJM 2015

CHIP – underlying mutations

Genovese et al., NEJM 2015

Clonal hematopoiesis & cardiovascular risk

A CHIP and Coronary Heart Disease

Subgroup	No. of Participants with Coronary Heart Disease/ No. at Risk	Hazard Ratio (95% CI)		P Value
BioImage				
No mutation (reference)	94/326			
Mutation	19/44		1.8 (1.1–2.9)	0.03
MDC				
No mutation (reference)	299/607			
Mutation	21/33	B	2.0 (1.2-3.1)	0.003
Fixed-effects meta-analysis	0.5	1.0 2.0 4.0	1.9 (1.4–2.7)	<0.001

B CHIP and Early-Onset Myocardial Infarction

Jaiswal et al., NEJM 2017

Clonal hematopoiesis & cardiovascular risk

Jaiswal et al., NEJM 2017

DNMT3A-R882H mutations

Yan et al., Nat Genet. 2011

The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits Wild-Type DNMT3A by Blocking Its Ability to Form Active Tetramers

David A. Russler-Germain,¹ David H. Spencer,² Margaret A. Young,¹ Tamara L. Lamprecht,¹ Christopher A. Miller,³ Robert Fulton,³ Matthew R. Meyer,⁴ Petra Erdmann-Gilmore,^{4,6} R. Reid Townsend,^{4,6} Richard K. Wilson,^{3,5,6} and Timothy J. Ley^{1,3,5,6,*}

DNMT3A-R882 mutations

- affect the methyltransferase domain of DNMT3A in
- present in ~60% AML cases and in pre-leukemia
- exhibits 80% reduction in methyltransferase activity
- 'Dominant Negative' mutation by inhibiting oligomerisation with wild-type DNMT3A

Juvenile Myelomonocytic Leukemia: an epigenetic disease?

Juvenile myelomonocytic leukemia (JMML): Background

- Aggressive myeloid malignancy of early childhood
- Only allo-HSCT is potentially curative
- 5-year EFS is 60%
- Hyperactivation of the Ras signaling pathway

JMML: Background

- DNA methylation so far only studied in few candidate gene loci
 - DNA methylation status of promoter CGI from 14 genes associated with cancer or Ras signaling were studied in a large JMML cohort (n=127)
 - Hypermethylated genes: BMP4, CALCA, CDKN2B, RARB (+ RASA4)

Olk-Batz et al., Blood 2011; Poetsch et al., Epigenetics 2014

Hypothesis

JMML shows aberrant DNA methylation patterns which might serve to discriminate groups with different biologic behavior and provide insights into the pathogenesis and progression of the disease

Cell type composition is heterogeneous

- JMML discovery cohort (n=20)
- Methylome analysis: 450k Illumina Bead Chip Array

Strategy to identify disease-specific aberrant methylation events

Lipka et al., Nat. Commun. 2017

Consensus clustering (k=2; discovery cohort)

Clustering of the JMML discovery cohort

Lipka et al., Nat. Commun. 2017

Validation cohort: three distinct molecular subtypes (n=147)

methylation group

Lipka et al., Nat. Commun. 2017

RAS-mediated deregulation of the epigenetic machinery in JMML?

Lipka, Witte et al., Nat. Commun. 2017

dkfz.

High risk of relapse in the HM group

Lipka et al., Nat. Commun. 2017

Univariate analysis

		Total	HM-group	IM-group	LM-group	р
	n	147	40	45	62	
Age at diagnosis [years]	mean (range)	1.4 (0.1-12.3)	3.1 (1.0-12.3)	1.4 (0.1-6.0)	0.4 (0.1-3.6)	<0.01
	< 2 yrs. >= 2 yrs.	95 (65%) 52 (35%)	5 (13%) 35 <i>(</i> 88%)	32 (71%) 13 (29%)	58 (94%) 4 (6%)	<0.01
Platelets [10 ⁹ /I]	mean (range)	79 <mark>(</mark> 5-548)	38 (5-234)	99 (12-442)	110 (9-548)	<0.01
	< 70 >= 70 missing	62 (47%) 71 (53%) 14	28 (78%) 8 (22%) 4	18 (43%) 24 (57%) 3	16 (29%) 39 (71%) 7	<0.01
Monocytes (PB) [%]	mean (range)	19 (0-55)	15 (5-31)	26 (5-55)	20 (0-38)	<0.01
	<10% 10-19% >=20%	20 (14%) 55 (37%) 72 (49%)	10 (25%) 19 (48%) 11 (28%)	5 (11%) 12 (27%) 28 (62%)	5 (8%) 24 (39%) 33 (53%)	<0.01
Hemoglobin F (age-adjusted)	normal elevated missing	43 (41%) 63 (59%) 41	0 (0%) 32 (100%) 8	13 (41%) 19 (59%) 13	30 (71%) 12 (29%) 20	<0.01
Karyotype	normal aberrant missing	93 (72%) 37 (29%) 17	28 (76%) 9 (24%) 3	20 (47%) 23 (54%) 2	45 (90%) 5 (10%) 12	<0.01
Mutation	NF1 PTPN11 som KRAS som NRAS som CBL No mutation	14 (11%) 48 (39%) 20 (16%) 19 (15%) 13 (11%) 10 (8%)	5 (14%) 26 (70%) 1 (3%) 3 (8%) 0 (0%) 2 (5%)	7 (16%) 16 (37%) 13 (30%) 2 (5%) 0 (0%) 5 (12%)	2 (5%) 6 (14%) 6 (14%) 14 (32%) 13 (30%) 3 (7%)	<0.01
	Noonan incomplete	18 5	0 3	0	<u>18</u> 0	

Lipka et al., Nat. Commun. 2017

Multivariate analysis

Cox model for relapse with TRM as competing event

- methylation group
- age at Dx
- sex
- PTPN11 mutation status (somatic only)
- platelet count

<u>Results:</u>

- Methylation group
 - HM vs. LM: RR 10.9 [1.8-66.2]
 HM vs IM: RR 4.8 [1.4-17.2]
 - IM vs. LM: RR 2.2 [0.4-11.2]
- PTPN11 mutation status
 - PTPN11-mut vs. all other: RR 3.3 [1.2-8.9]

Take-home Message

Complex epigenetic alterations contribute to tumor initiation and progression and are as important for the understanding of tumor biology as genetic alterations.

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION