Genetic Therapy of Cells

Helmut Hanenberg, MD

Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany

ENT (HNO) Department, UKD, Heinrich Heine University, 40225 Düsseldorf, Germany

Content

- Introduction
- Principle of integrating viral vectors
- Principles of non-integrating viral vectors
- Nonviral alternatives for genetic therapies

Three Principles of Stem Cell Gene Therapy

6

- The integrated vector as part of the genome will also be present after devision in each daughter cell.
- If a stem cell was the target for the integrating vector, all its progeny (= all blood & immune cells) will be genetically modified - for the life of the stem cell.
- If a selective advantage for corrected over deficient cells exists, the corrected stem cells & their progeny will repopulate the entire hematopoietic system.

Does Stem Cell Gene Therapy Exists in <mark>nature</mark>?

Genetic Therapies				
Pol II promotor protein (cDI		NA) polyA	Pol III promotor	aaaaa shRNA (DNA)
Therapeutic agent:		protein		RNAi
Expression:		permanent	\longleftrightarrow	transient
genetic manipulation:		ex vivo	\longleftrightarrow	in vivo
target cells:		dividing		nondividing/
				post-mitotic
target or	gan structure:	hierachical	\longleftrightarrow	heterachical

25 **AAV Nanoparticles as Vectors** Fig. 4 | Ov et for gene delivery (part **b**) and clinical trial ph (part a), pr e (part c). rAAV, Large-scale vector manufactoring and costs Glybera® (liver) => US\$ 1.2 million for one shot LuxturnaR (eye) => US\$ 425,000 for one eye suited for postmitotic cells gene replacement gene silencing

0 °...

- gene addition
- hemophilia A: "likely to be cost-saving/-effective compared with FVIII prophylaxis" at US\$ 1 million

21/3/2019

- Principles of non-integrating viral vectors
- Nonviral alternatives for genetic therapies
 - > transport of the DNA into hepatocytes
 - expression of factor in liver cells
 - repeated applications possible => application via peripheral veins
 excellent safety & toxicity
 - Platform suitable for other liver disorders
 - industrial production of the formulation