Severe congenital neutropenia
Milestones of the history of congenital neutropenias

- „Agranulocytosis-Schultz-syndrome“
- „Preleukemic Syndrome“
- G-CSF (Phase 1-3 clinical trials)
- CSF3R mutations*
- SBDS mutations
- P14 mutations
- RUNX1 mutations*
- „Infantile genetic agranulocytosis – Kostmann-syndrome“
- Recombinant G-CSF
- Establishment of the SCNIR
- ELANE mutations
- HAX1 mutations
- G6PC3 mutations

* = acquired mutations
Severe congenital neutropenia

G-CSF Treatment

Patient 8716/01: 20 µg/kg/d

Patient 8716/27: 5 µg/kg/d

Patient 8716/27: 5 µg/kg/d
Identification of Neutropenia causing gene defects

Establishment of the SCNIR

1994

- ELANE
 - Horwitz M, Benson KF, Person RE et. al. (1999)

1999

- SBDS
 - Boocock GR, Morrison JA, Popovic M et. al. (2003)

2003

- CXCR4
 - Hernandez PA, Gorlin RJ, Lukens JN et. al. (2003)

- P14

2007

- HAX1

2009

- G6PC3
 - Boztug K, Appaswamy G, Ashikov A et. al. (2009)
ELANE Mutations in Cyclic and Congenital Neutropenia

Linear Localization

Congenital Neutropenia (CN)
- 189 patients, 29 AML/MDS

Cyclic Neutropenia (CyN)
- 118 patients, 0 MDS/AML

29 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F43L</td>
<td>A61G</td>
<td>A79fs</td>
<td>IVS3 -8 G>A</td>
<td>IVS3 +2100 C>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V45M</td>
<td>A61V</td>
<td>R103L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S46F</td>
<td>V65D</td>
<td>R81P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C55S</td>
<td>M66R</td>
<td>L84P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G56R</td>
<td>S67W</td>
<td>L108F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A57T</td>
<td>C71F</td>
<td>G85E</td>
<td>IVS4 +1 G>A</td>
<td>IVS4 +6 3bp ins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A57V</td>
<td>C71R</td>
<td>L120F</td>
<td>IVS4 +1 G>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I60M</td>
<td>C71S</td>
<td>I118N</td>
<td>IVS4 +5 G>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I60T</td>
<td>C71Y</td>
<td>C71R</td>
<td>G210fs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1R</td>
<td>M1T</td>
<td></td>
<td>IVS3 -2 A>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. -9 A>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 patient

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS3</td>
<td>IVS3 +2100 C>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L123H</td>
<td>W156G</td>
<td></td>
<td>IVS4 +1 G>A</td>
<td>IVS4 +6 3bp ins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S126L</td>
<td>W156R</td>
<td></td>
<td>IVS4 +3 A>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S126W</td>
<td>V174_C181del</td>
<td></td>
<td>IVS4 +5 G>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A127D</td>
<td>C181fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T128del</td>
<td>V186I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I129del</td>
<td>V190fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P139L</td>
<td>R190R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C151S</td>
<td>R193Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C151Y</td>
<td>Q194ter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L152P</td>
<td>V197fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A153P</td>
<td>F199fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M154R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS3</td>
<td>IVS3 +2100 C>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

49 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D201fs</td>
<td>R20Q</td>
<td></td>
<td>IVS4 +1 G>A</td>
<td>IVS4 +6 3bp ins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S202fs</td>
<td>G221ter</td>
<td></td>
<td>IVS4 +3 A>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G203R</td>
<td>C223fs</td>
<td></td>
<td>IVS4 +5 G>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L206fs</td>
<td>C223ter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V207D</td>
<td>S225ter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C208G</td>
<td>G226R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C208R</td>
<td>Y228ter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G210V</td>
<td>D230fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G210W</td>
<td>F232fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G214E</td>
<td>A233fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G214R</td>
<td>Q237fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G214ter</td>
<td>N240del</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS3</td>
<td>IVS3 +2100 C>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

49 patients

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Exon 2</th>
<th>Exon 3</th>
<th>Intron III</th>
<th>Exon 4</th>
<th>Intron IV</th>
<th>Exon 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L206F</td>
<td>G214ter</td>
<td></td>
<td>IVS4 +1 G>A</td>
<td>IVS4 +6 3bp ins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G214R</td>
<td>Y228ter</td>
<td></td>
<td>IVS4 +3 A>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W241G</td>
<td>W241L</td>
<td></td>
<td>IVS4 +5 G>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W241ter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Unfolded protein response (UPR)

Transcription of new BiP

Signal to nucleus

Apoptosis

Translational arrest

Protein degradation

Adapted from Dudek, J. et al., Cell. Mol. Life. Sci. 2008
ATF6 is upregulated in myeloid cells of CN, but not CyN patients

CD33^+ bone marrow cells

Nustede R., et al., BJH 2016
Mutations affecting both isoforms are associated with neutropenia and a neurological phenotype:
Isoform 2 is critical for neuronal functions,
Mutations affecting isoform 1 only (e.g. Trp44X) are associated with neutropenia only.

Klein, C., et al., Nat Gen 2007
HCLS1 is phosphorylated by Lyn and Syk upon G-CSF stimulation.

HCLS1 is a Hematopoietic Cell specific Lyn Substrate 1.

HAX1 is a HCLS1 Associated protein X 1.
G-CSF failed to phosphorylate HCLS1 in hematopoietic cells of CN patients harboring HAX1 mutations.
HCLS1 is essential for myeloid differentiation

HCLS1 is involved in the nuclear transport of LEF-1 protein

(a) LEF-1 WT and LEF-1 HCLS1 binding MUT

(b) LEF-1 with HCLS1 WT, HCLS1 Y397F, and HCLS1 NLS in - G-CSF and + G-CSF conditions.

LEF-1

HCLS1

WT

Y397F

NLS

- G-CSF

+ G-CSF
LEF-1 and its target gene C/EBPα expression are downregulated in ELA2 – and HAX1 mutated CN patients

CN: congenital neutropenia; CyN: cyclic neutropenia;

Restoration of defective LEF-1 expression promotes granulocytic differentiation of CD34+ progenitors of CN patients

HCLS1 interacts with LEF-1 transcription factor inducing its nuclear translocation and activation upon G-CSF treatment

Skokowa J. et al., Nature Medicine, 2012
Glucose-6-Phosphatase Komplex

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
<th>Expression</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSD1a</td>
<td>G6PC1</td>
<td>Liver, kidney, intestine</td>
<td>GSD</td>
</tr>
<tr>
<td>GSD1b</td>
<td>G6PT</td>
<td>ubiquitous</td>
<td>GSD + CN</td>
</tr>
<tr>
<td>G6PC3-deficiency</td>
<td>G6PC3</td>
<td>ubiquitous</td>
<td>CN</td>
</tr>
</tbody>
</table>

Diagram:

- **Cytosol**
 - G6PT
 - G6PC1
 - G6PC3
 - ER Lumen

Chemical Reaction:

\[
\text{glucose-6-phosphate} + \text{Mg}^{++} + \text{H}_2\text{O} \rightarrow \text{glucose} + \text{Pi}
\]
JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia

JAGN1-mutant granulocytes are characterized by ultrastructural defects, absence of secretory vesicles and aberrant N-glycosylation of multiple proteins, and increased apoptosis.

Family A

I-1 □ I-2 ○ I-3 □ I-4 □

II-1 ○ II-2 (P1) ○ II-3 (P2)

II-4 (P3) □ II-5 □ II-6 (P4) □ II-7 (P5)
c.998-2A>T

p.W547*

Healthy individual

CN patient

Ig-like domain

Cytokine receptor homology region

Fibronectin III-like domains

Transmembrane region

Intracytoplasmic region

Neutrophils Monocytes

G-CSFR

isotype ctrl healthy individual

isotype ctrl CN patient

anti-G-CSFR healthy individual

anti-G-CSFR CN patient

G-CSF (up to 110μg/kg/day)

GM-CSF 6 μg/kg/day twice a week

GM-CSF 3 μg/kg/day twice a week

ANC, x1000/ul

Time, months after birth

Figure 1
Distribution of gene mutations in 226 European congenital neutropenia patients
Neutropenia causing mutations

- Most of cases of SCN are attributable to ELANE mutations, but there are
- mutations in genes affecting G-CSF signaling (CSF3R, HAX1)
- genes affecting glucose homeostasis (SLC37A4, G6PC3),
- lysosomal function (LYST, RAB27A, ROBLD3/p14, AP3B1, VPS13B, TCIRG1),
- ribosomal proteins (SBDS, RMRP), mitochondrial proteins (HAX1, TAZ),
- immune functions (STK4, GFI1, CXCR4), and X-linked (WAS)
- ultrastructural defects, absence of secretory vesicles and
How does G-CSF induce granulopoiesis (overcome senescence) in CN, if both LEF-1 and HCLS1 are severely downregulated?
How does G-CSF induce granulopoiesis in CN?

LEF-1 dependent **steady-state** granulopoiesis

LEF-1 independent **emergency** granulopoiesis

G-CSF induces C/EBPβ in CN!
Nampt triggers myeloid differentiation of CD34+ cells

Western Blot Analysis:
- **Nampt:** 55 kDa
- **SIRT1:** 110 kDa
- **C/EBPβ:** 37.5 kDa
- **β-actin:** 45 kDa

Flow Cytometry:
- **Control:** 20%
- **Nampt:** 84%

G-CSF Production:
- **Ctrl:** 0 ng/ml medium
- **Nampt:** 0.6 ng/ml medium

Significance:
- **** Signifies statistical significance.
G-CSF induces Nampt/PBEF and NAD$^+$ in myeloid progenitors from CN patients

G-CSF → STAT3/Nampt → NA → NAD$^+$ → SIRT1

Regulation of transcription

G-CSF induces Nampt/PBEF and NAD$^+$ in myeloid progenitors from CN patients

Nampt triggers myeloid differentiation of CD34+ cells

- ctrl
- Nampt
- G-CSF
- Nampt + G-CSF

% of CD16+ cells

Time (d)

0 7 10 14

% of CD15+ cells

Time (d)

0 7 10 14

- NAMPT

+ NAMPT

10 μm
Vitamin B3 treatment of patient with cyclic neutropenia

- Treatment with G-CSF
- Treatment with Vitamin B3 without G-CSF

Neutrophil granulocytes in peripheral blood (x 10^3 µl⁻¹)

Graphs showing neutrophil granulocytes levels with and without G-CSF treatment.
G-CSF signaling pathways

G-CSF

G-CSFR

Vitamin B3
(Nicotinamide)

Risk of leukemia in CN patients

First reports on leukemias in CN:
Gilman PA, et al., Blood 1970
G-CSF Treatment by Neutropenia-Genotype

<table>
<thead>
<tr>
<th>Neutropenia Code</th>
<th>No Leukemia (n)</th>
<th>Median G-CSF dose (µg/kg/d)</th>
<th>Leukemia (n)</th>
<th>Median G-CSF dose (µg/kg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELANE-CN</td>
<td>72</td>
<td>4,9</td>
<td>11</td>
<td>18,7</td>
</tr>
<tr>
<td>HAX1-CN</td>
<td>25</td>
<td>3,5</td>
<td>6</td>
<td>7,05</td>
</tr>
<tr>
<td>ELANEneg/HAX1neg</td>
<td>19</td>
<td>11,7</td>
<td>6</td>
<td>15,05</td>
</tr>
<tr>
<td>neg tested</td>
<td>15</td>
<td>4,43</td>
<td>1</td>
<td>4,86</td>
</tr>
<tr>
<td>WAS</td>
<td>3</td>
<td>3,23</td>
<td>2</td>
<td>3,09</td>
</tr>
<tr>
<td>SDS</td>
<td>6</td>
<td>1,72</td>
<td>1</td>
<td>4,3</td>
</tr>
<tr>
<td>CN not tested</td>
<td>44</td>
<td>5,69</td>
<td>6</td>
<td>5,22</td>
</tr>
<tr>
<td>GSD1B</td>
<td>19</td>
<td>3,21</td>
<td>1</td>
<td>3,0</td>
</tr>
<tr>
<td>CyC not tested</td>
<td>24</td>
<td>1,53</td>
<td>2</td>
<td>10,76</td>
</tr>
</tbody>
</table>

* Median G-CSF Dose for all Congenital Patients **4,85 µg/kg/d**
and for all Cyclic Patients **1,6 µg/kg/d**
Congenital Neutropenia
Incidence of Leukemia
CI at 30 Years by Genetic Subtype

Log Rank p=0.649
VAFs of CSF3R mutant clones in CN and CN/AML patients
CSF3R mutations
VAFs of CSF3R mutant clones in CN and CN/AML patients.
Leukemia-associated mutations in 31 CN/AML patients

Targeted deep sequencing

23 (74 %) CSF3R
20 (64,5 %) RUNX1

2 FLT3-ITD
4 EP300
2 SUZ12
1 CREBB
1 CBL
1 NRAS

!!! Neg. for: CEBPA, DNMT3A, IDH1, IDH2, NPM1, TET2
High frequency of cooperating \textit{RUNX1} and \textit{CSF3R} mutations in 31 CN/AML patients
Segregation of \textit{RUNX1} and \textit{CSF3R} mutations in blasts of CN/AML patient

\begin{itemize}
 \item N=48
 \item \textit{RUNX1} MUT + \textit{CSF3R} MUT: 43
 \item \textit{RUNX1} MUT only: 4
 \item \textit{CSF3R} MUT only: 1
\end{itemize}
First detection of *CSF3R*- and *Runx1* mutations in months prior to AML

<table>
<thead>
<tr>
<th>Patient</th>
<th>CSF3R mut</th>
<th>Runx1 mut</th>
</tr>
</thead>
<tbody>
<tr>
<td># 6</td>
<td>-192</td>
<td>-36</td>
</tr>
<tr>
<td># 7</td>
<td>-36</td>
<td>-12</td>
</tr>
<tr>
<td># 10</td>
<td>-36</td>
<td>-1</td>
</tr>
<tr>
<td># 14</td>
<td>-24</td>
<td>-8</td>
</tr>
<tr>
<td># 16</td>
<td>-60</td>
<td>-4</td>
</tr>
<tr>
<td># 19</td>
<td>-36</td>
<td>-9</td>
</tr>
</tbody>
</table>
G-CSF treatment in combination with mutations in \textit{CSF3R} and \textit{RUNX1} are leukemogenic

Skokowa et al., EHA 2014 Presidential Symposium
Figure 1

A 1st sequential ANC count of CyN-AML patient

B 2nd sequential ANC count of CyN-AML patient (4 months later)

C

- CyN-AML
- CyN-AML mutant allele
- CyN-AML wild type allele
- Mother
- Father

ELANE, exon 5

c.697G>C c.703delG

D

ELANE
β-actin

Blood 2016
Mutated RUNX1 enhanced clonogenic capacity of lin- cells from d715 Csf3r mice

BM lin- cells from d715 Csf3r mice

48 h expansion

72 h transduction with lentiviral constructs with WT or MUT RUNX1

FACS sorting BFP+ cells

1st replating

2nd replating

number of colonies

<table>
<thead>
<tr>
<th>WT RUNX1</th>
<th>R139G RUNX1</th>
<th>R174X RUNX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

number of colonies

<table>
<thead>
<tr>
<th>ctrl BFP</th>
<th>WT RUNX1</th>
<th>R139G RUNX1</th>
<th>R174X RUNX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>no colonies</td>
<td></td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

number of cells 2 weeks after plating, x 10^4

<table>
<thead>
<tr>
<th>ctrl BFP</th>
<th>WT RUNX1</th>
<th>R139G RUNX1</th>
<th>R174X RUNX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The two-hit hypothesis of leukemogenesis in CN

ELANE-, HAX1-mutations, Genotoxic stress
HSC

1st hit

pre-leukemia stem cell

CSF3R mutation

2nd hit

RUNX1 mutation

leukemia stem cell

Monosomy 7
Trisomy 21

leukemic blasts

diminished LEF-1, C/EBPa, HCLS1
hyperactivated NAMPT/SIRTs, Akt, STAT5a
deacetylated p53, FOXO3a, LEF-1
Improvement of maturation arrest after genetic correction

Correction of ELANE mutations in iPSCs from a patient with congenital neutropenia by CRISP/Cas9 technology

Nayak RC, et al. JCI 2015
Acknowledgement

Dept. Molecular Hematopoiesis
Julia Skokowa
Ünalan Murat
Kandabarau Sergey
Klimenkova Olga
Klimiankou Max
Samareh Bardia

Dept. of Hem./Oncology MHH
Arnold Ganser
Michael Heuser

Institute of Cell/Mol. Pathology MHH
Doris Steinemann
Brigitte Schlegelberger

SCN Registries
Cornelia Zeidler
David Dale
Jean Donadieu
and the LLP Physicians

Dept. of Exp Hematology MHH
Axel Schambach
Zhixiong Li

Heinrich-Pette-Institut
Hamburg
Carol Stocking

Erasmus University
Rotterdam
Ivo Touw
Haunersche Kinderklinik
München
Christoph Klein

Munich Leukemia Laboratory
Susanne Schnittgers
Andreas Kohlmann

Dept. Ped Hem./Oncology MHH
Dirk Reinhardt
Martin Stanulla

Department of Pathology MHH
H.-H. Kreipe
Kais Hussein

Medizinische Hochschule Hannover und Universitätsklinikum Tübingen