Severe congenital neutropenia

Milestones of the history of congenital neutropenias

* = acquired mutations

Identification of Neutropenia causing gene defects

Severe Chronic Neutropenia International Registry (SCNIR)

ELANE Mutations in Cyclic and Congenital Neutropenia

Congenital Neutropenia	Linea	ar Localizatio	on			
(CN)					49 natient	ts
189 patients, 29 AML/MDS			<u>63 patients</u>		<u>10 MDS/A</u>	<u>ML</u>
			<u>7 MDS/AML</u>		D201fs ¹	R2200
			L123H W156G		S202fs ¹	G221ter
<u>29 patients</u>			<mark>S126L¹</mark> W156R		G203R	C223fs
<u>4 MDS/AML</u>	<u>29 patients</u>		S126W V174_C18	31del ¹	L206fs ¹	C223ter <mark>1</mark>
F43L A61G	<u>4 IVIDS/AIVIL</u>		A127D C181fs		V207D	S225ter
V45M A61V	A79fs ¹ R103L		1128del V186		C208G	G226R
S46F V65D ¹	R81P R103P		D1201 P1015	11 patients	C208ter ¹	Y228ter ¹
C555 M66R	V83D 1118N		C151S R1930	2 MDS/AML	G210V	
3 patients AS7T C71E	L84P 1120F	<u>4 patients</u>	C151Y ³ Q194ter		G210W	Γ23215 Δ233fs
$\frac{1 MDS/AML}{1 MDS/AML} A57V^1 C71B$	G85R 1120N	<u>1 MDS/AML</u>	L152P ¹ V197fs	IVS4 +1 G>T	G214C	0237fs
<u>1 patient</u> M1R ¹ I60M C71S	V98 Q102del L121H	IVS3 -8 C>A ¹	A153P F199fs	IVS4 +5 G>A	G214ter	N240del
c9 A>G M1T I60T ¹ C71Y	V101M ¹	IVS3 +2100 C>T	M154R	IVS4 +6 3bp ins	¹ V219I	
5' UTR Exon 1 Exon 2	Exon 3	Intron III	Exon 4	Intron IV	Exc	on 5
<u>10 patients</u>	<u>3 patients</u>	<u>1 patient</u>	<u>16 patients</u>	<u>49 patients</u>	<u>39 pc</u>	atients
Cyclic F43L	Q97L	IVS3 -2 A>C	S126L	IVS4 +1 G>A	L2 ⁻	06F
Neutropenia A61V	V101M		S126W	IVS4 +3 A>T	G21	L4ter
(CyN)	D117V		P139L	IVS4 +5 G>A	R2	20Q
118 patients,			D174ins		Y22	8ter
U MDS/AML			V186_D201del		W2	41G
			Q194ter		W2	241L 41tor

Dale D, Welte K, et al., Curr Opin Hematol. 2015;22:3-11

ATF6 is upregulated in myeloid cells of CN, but not CyN patients

CD33⁺ bone marrow cells

Nustede R., et al., BJH 2016

HAX transcript variants

Mutations affecting **both** isoforms are associated with neutropenia **and** a neurological phenotype: Isoform 2 is critical for neuronal functions,

Mutations affecting isoform 1 only (e.g. Trp44X) are associated with neutropenia only.

Klein, C., et al., Nat Gen 2007 Germeshausen M., et al., Blood 2008 Carlsson G., et al., J Intern Med 2008

HCLS1 is phosphorylated by Lyn and Syk upon G-CSF stimulation

HCLS1 is a Hematopoietic Cell specific Lyn Substrate 1

HAX1 is a HCLS1 Associated protein X 1

G-CSF failed to phosphorylate HCLS1 in hematopoietic cells of CN patients harboring HAX1 mutations

HCLS1 is essential for myeloid differentiation

Skokowa, J., et al., Nat Med 2012

HCLS1 is involved in the nuclear transport of LEF-1 protein

LEF-1 and its target gene C/EBP α expression are downregulated in ELA2 – and HAX1 mutated CN patients

CN: congenital neutropenia; CyN: cyclic neutropenia;

Skokowa, J., et al., Nat Med 2006; 12: 1191-7

Restoration of defective LEF-1 expression promotes granulocytic differentiation of CD34⁺ progenitors of CN patients

Skokowa, J., et al., Nat Med 2006; 12: 1191-7

HCLS1 interacts with LEF-1 transcription factor inducing its nuclear translocation and activation upon G-CSF treatment

Glucose-6-Phosphatase Komplex

Disease	Gene	Expression	Phenotype
GSD1a	G6PC1	Liver, kidney, intestine	GSD
GSD1b	G6PT	ubiquitous	GSD + CN
G6PC3-deficiency	G6PC3	ubiquitous	CN

JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia Boztug K., et al., *Nature Genetics* **46**, 1021–1027 (2014)

JAGN1-mutant granulocytes are characterized by ultrastructural defects, absence of secretory vesicles and aberrant N-glycosylation of multiple proteins, and increased apoptosis.

Family A

Distribution of gene mutations in 226 European congenital neutropenia patients

Neutropenia causing mutations

- Most of cases of SCN are attributable to ELANE mutations, but there are
- mutations in genes affecting G-CSF signaling (CSF3R, HAX1)
- genes affecting glucose homeostasis (SLC37A4, G6PC3),
- Iysosomal function (LYST, RAB27A, ROBLD3/p14, AP3B1, VPS13B, TCIRG1),
- ribosomal proteins (SBDS, RMRP), mitochondrial proteins (HAX1, TAZ),
- immune functions (STK4, GFI1, CXCR4), and X-linked (WAS)
- ultrastructural defects, absence of secretory vesicles and

How does G-CSF induce granulopoiesis (overcome senescence) in CN, if both LEF-1 and HCLS1 are severely downregulated?

How does G-CSF induce granulopoiesis in CN?

LEF-1 dependent steady-state

LEF-1 independent emergency

G-CSF induces C/EBPß in CN!

Nampt triggers myeloid differentiation of CD34⁺ cells

G-CSF induces Nampt/PBEF and NAD⁺ in myeloid progenitors from **CN** patients **G-CSF** Nampt/PBEF protein ۲**08** * STAT3/Nampt bone marrow promyelocytes 60 Ng/ml ➡ SIRT1 NA I NAD⁺ 40-20-0 **Regulation of** ΜN ctrl CN CN ctrl G-CSF transcription + + MAXGOST CN[×] **5**1 4 iNAD⁺, mg/l 3 2 110kDa -SIRT1 1 loading 0 control CN MN ctrl

G-CSF +

+ + +

Skokowa, J., et al., Nat Med 2009; 15: 151-8

Nampt triggers myeloid differentiation of CD34⁺ cells

Vitamin B3 treatment of patient with cyclic neutropenia

G-CSF signaling pathways G-CSF Vitamin B3 **G-CSFR** (Nicotinamide) **AS** Grb2 <u>yn</u> MAPK HAX1 HCLS1 STAT3,5 Nampt NAD+ LEF-1 JAK2 HP-2 SHP-1 SOCS3 Sirtuins, protein deacetylases STAT3,5 HCLS1 C/EBPs AX1 C/EBPs _EF-1

Nampt: Skokowa J, et al, Nat. Med 2009

Risk of leukemia in CN patients

G-CSF Treatment by Neutropenia-Genotype

Neutropenia Code	No Leukemia (n)	Median G-CSF dose (µg/kg/d)	Leukemia (n)	Median G-CSF dose (µg/kg/d)
ELANE-CN	72	4,9	11	18,7
HAX1-CN	25	3,5	6	7,05
ELANEneg/HAX1neg	19	11,7	6	15,05
neg tested	15	4,43	1	4,86
WAS	3	3,23	2	3,09
SDS	6	1,72	1	4,3
CN not tested	44	5,69	6	5,22
GSD1B	19	3,21	1	3,0
CyC not tested	24	1,53	2	10,76

* Median G-CSF Dose for all Congenital Patients **4,85** µg/kg/d and for all Cyclic Patients **1,6** µg/kg/d

Congenital Neutropenia Incidence of Leukemia CI at 30 Years by Genetic Subtype

VAFs of *CSF3R* mutant clones in CN and CN/AML patients

CSF3R mutations

VAFs of CSF3R mutant clones

in CN and CN/AML patients.

Leukemia-associated mutations in 31 CN/AML patients

Targeted deep sequencing

23 (74 %) *CSF3R* 20 (64,5 %) *RUNX1*

2 FLT3-ITD
4 EP300
2 SUZ12
1 CREBB
1 CBL
1 NRAS

!!! Neg. for: CEBPA, DNMT3A, IDH1, IDH2, NPM1, TET2 High frequency of cooperating *RUNX1* and *CSF3R* mutations in 31 CN/AML patients

Segregation of *RUNX1* and *CSF3R* mutations in blasts of CN/AML patient

N=48

First detection of *CSF3R-* and *Runx1* mutations in months prior to AML

Patient	<i>CSF3R</i> mut	<i>Runx1</i> mut
# 6	-192	-36
# 7	-36	-12
# 10	-36	- 1
# 14	-24	- 8
# 16	-60	-4
# 19	-36	-9

G-CSF treatment in combination with mutations in CSF3R and RUNX1 are leukemogenic

Skokowa et al., EHA 2014 Presidential Symposium

B 2nd sequential ANC count of CyN-AML patient (4 months later)

Mutated RUNX1 enhanced clonogenic capacity of lincells from d715 Csf3r mice

The two-hit hypothesis of leukemogenesis in CN

Improvement of maturation arrest after genetic correction

HAX1 3F5 +GFP

Morishima T et al. Haematologica. 2014; 99:19-27.

Correction of ELANE mutations in iPSCs from a patient with congenital neutropenia by CRISP/Cas9 technology

Acknowledgement

Dept. Molecular Hematopoiesis

Julia Skokowa Ünalan Murat Kandabarau Sergey Klimenkova Olga Klimiankou Max Samareh Bardia

SCN Registries

Cornelia Zeidler David Dale Jean Donadieu and the LLP Physicians

Dept. of Hem./Oncology MHH

Arnold Ganser Michael Heuser

Institute of Cell/Mol. Pathology MHH Doris Steinemann Brigitte Schlegelberger

Dept. of Exp Hematology MHH

Axel Schambach Zhixiong Li

Heinrich-Pette-Institut Hamburg Carol Stocking

Washington Univ. School of Medicine Dan Link

Dept. Ped Hem./Oncology MHH Dirk Reinhardt Martin Stanulla Department of Pathology MHH H.-H. Kreipe Kais Hussein Erasmus University Rotterdam Ivo Touw

Haunersche Kinderklinik München Christoph Klein

Munich Leukemia Laboratory

Susanne Schnittgers Andreas Kohlmann

Medizinische Hochschule Hannover und Universitätsklinikum Tübingen

Bundesministerium für Bildung und Forschung

Deutsche José Carreras Leukämie-Stiftung e.V.

Elternverein krebskranker Kinder Hannover e.V.

