





#### Bildgebende und verwandte Verfahren zur Beurteilung des Eisenhaushalts Peter Nielsen

PD Dr.med. Dr. rer.nat. Peter Nielsen "Eisenstoffwechselambulanz"

Interdisziplinäre klinische Gruppe Eisenstoffwechsel (Zentrum für Geburtshilfe, Kinder- und Jugendmedizin/Zentrum für Experimentelle Medizin): Roland Fischer, Regine Grosse, Jin Yamamura, Bjoern Schoennagel, Christoph Berliner, Sarah Keller, Enver Tahir, Gerhard Adam ,Gritta Janka

Universitätsklinikum Hamburg-Eppendorf Hamburg GERMANY, <u>www.eiseninfo.de</u>

# Zielorgane für Eisenüberladung bei transfusionabhängigen Patienten





# ERFASSUNG VON EISEN-ASSOZIERTER KOMPLIKATIONEN

#### Komplikationen

**Fe-Messung** 

**Funktions-DIAGNOSTIK** 

- Herzversagen
- Leberfibrose/cirrhose
- Diabetes
- Hypothyroidismus
- Hypoparathyroidismus
- Adrenale Insuffizienz
- Hypogonadismus, Infertility
- Wachstumshormon-Def
- Osteoporosis

- Herz-Fe (MRI)
- Leber-Fe (MRI, SQUID)
- Pankreas Fe/Fett (MR)<sup>1-4,7,8</sup>
- Thyroid-Fe, Liver-Fe?
- Thyroid-Fe, Leber-Fe?
- Adrenal Gland<sup>9</sup>, Liver Iron?<sup>5</sup>
- Hypophysen-Fe & Volumen<sup>6</sup>
- Hypophysen-Fe & Volumen<sup>6</sup>
- Hypophysen-Fe, Leber-Fe?
- <sup>1</sup>Au-2007; <sup>2</sup>Noetzli-2009; <sup>3</sup>Papakonstantinou-2009;
   <sup>4</sup>Noetzli-2010; <sup>5</sup>Scacchi-2010; <sup>6</sup>Wood-2010; <sup>7</sup>Pfeifer-2014; <sup>7</sup>Yamamura <sup>8</sup>Drakonaki-2005

- EKG, Echocardio, Holter
- 个ALT, AST, 个Fibroscan
- OGTT, Lipase, Amylase
- **↑**TSH, **↓**fT3, **↓**fT4
- $\Psi$ PTH,  $\Psi$ Ca,
- **↓**1,25(OH)<sub>2</sub>VitD3
- ↓ACTH test
- $\Psi$ LH,  $\Psi$ FSH,  $\Psi$ sex hormones
- о ↓GH, ↓IGF-I
- ↓BMD (DEXA, micro-CT)

## MESSUNG VON GEWEBE-EISEN

basierend auf der Differenz zwischen paramagnetischer Susceptibilität (↑) von Speichereisen und der diamagnetischen Susceptibilität (↓) von biologischen Geweben

# Biomagnetic Liver Susceptometry (BLS)

 Iow T<sub>c</sub> (SQUID, LHe), high T<sub>c</sub> (LN<sub>2</sub>), room T (MID-Genoa) (auch mit MRI: MR Cardio-Susceptometry, *Wang et al (2010);* Quant. Susceptibility Mapping (QSM ), *Sharma et al (2014)*)

# quantitative MRI

#### - Spin Echo (SE): R2 (= 1/T2)

klassische Single SE (Gottschalk 1990; Engelhardt 1994, St.Pierre et al, 2005), *slow* single" SE (Hahn) (Wood et al, 2005): *breathhold* 

#### - Gradient Recalled Echo (GRE): R2\* (= 1/T2\*)

Gandon 1994, 2004 multi-echo breathhold (Anderson et al, 2001),

# Gemeinsamkeiten & Unterschiede zwischen MRI- $R_2(R_2^*)$ and BLS



# Die Bedeutung der Lebereisenmessung bei Eisenüberladungserkrankungen

80 % des exzessiv gespeicherten Eisens (total body iron, TBI) befindet sich in Leber und Milz  $\rightarrow$  TBI = (LIC•VoI + SIC•VoI) / 0.8



→ Leber-Fe: wichtige Information f
ür die Initiierung der Chelatortherapie und zur Dosisanpassung!

#### Fischer et al: Am J Hematol 1999;60:289-9

### Ach ja, bevor ich das vergesse:

#### Leberbiopsie

histologische/histochemische Aussage (klassischer Nutzen) + Messung der Eisenkonzentration

keine Routinemethode mehr für Fe-Bestimmung, methodisch anfällig (Wiegefehler), brauchbar in Studien mit möglichst demselben Experimentator
10 mg Probe nicht repräsentativ für eine "unruhige" Leber/Lebercirrhose

#### Die unlösbare Normdebatte

#### Feuchtgewicht (mg/g Leber)

stammt aus nichtinvasiven Messungen an lebenden Menschen (mg Fe/g Leber) MRT oder SQUID

#### Trockengewicht (mg/g d.w.)

stammt aus der Biopsie, 10 mg Gewebe wird getrocknet

Umrechnung sehr problematisch (1:3, 1:6?), weil der Wassergehalt variiert

In Studien sollte man tunlichst immer Werte einer Methode vergleichen!

## Hamburger Biosuszeptometer zur nichtinvasiven Lebereisenquantifizierung



Fe(c<sub>Fer</sub>) = Funktion der SQUID-Spannung



ähnliche Geräte in Turin/Italien, Oakland/USA



signal = magnetic flux  
integral 
$$\int M(\chi, \mathbf{r}) \cdot \mathbf{B}_{d} dV = \Delta \chi / \chi_{Fe} = LIC$$

 $\chi_{Fe}$  (ferritin/hemosiderin) = 1600·10<sup>-6</sup> [SI<sub>units</sub>·g<sub>tis</sub>/g<sub>Fe</sub>]

# Hamburg SQUID Biosusceptometer (1989 - 2015): ca. 2500 Patienten, ca. 6000 Messungen



## Leber-Fe = Interventionsparameter für den Beginn einer Chelatortherapie

LIC und Ferritin in Thalassämie-Patienten vor einer Chelatortherapie (n = 11, Alter: 1.8 - 6.3 y) liver iron conc. 8000 8000 🔺 serum ferritin  $R^2 = 0.94$ 6000 6000 LIC [µg/gliver] 20 ECs or LIC =2000  $\mu g/g_{liver}$ ferritin [µg/|  $R^2 = 0.60$ 4000 4000 2000 2000 recommended range Olivieri, Brittenham (1997) 0 0 12 0 8 16 20 Δ transfused iron [g]

# Patient mit ß-Thalassämia major, Messungen mit SQUID-Biomagnetometer



# Patient mit ß-Thalassämia major, Messungen mit SQUID-Biomagnetometer



## Das Serum Ferritin korreliert signifikant mit dem Leber-Eisen, aber die individuelle Vorhersage ist sehr schlecht



#### NTBI-Bildung bei verschiedenen Transfusionssiderosen (TDTM, DBA, SIC) (MSIO pilot)



Leber-Eisen im Kontext von Bluttransfusionen & Chelator Therapie: → molare Chelatoreffizienz (mEff)



Fischer et al: Ann N Y Acad Sci 2005;1054:350-7



→ Gut für Compliancecontrolle

# MESSUNG VON GEWEBE-EISEN

basierend auf der Differenz zwischen paramagnetischer Susceptibilität (↑) von Speichereisen und der diamagnetischen Susceptibilität (↓) von biologischen Geweben

# Biomagnetic Liver Susceptometry (BLS)

 Iow T<sub>c</sub> (SQUID, LHe), high T<sub>c</sub> (LN<sub>2</sub>), room T (MID-Genoa) (auch mit MRI: MR Cardio-Susceptometry, *Wang et al (2010);* Quant. Susceptibility Mapping (QSM ), *Sharma et al (2014)*)

# quantitative MRI

### - Spin Echo (SE): R2 (= 1/T2)

klassische Single SE (Gottschalk 1990; Engelhardt 1994, St.Pierre et al, 2005), *slow* single" SE (Hahn) (Wood et al, 2005): *breathhold* 

### - Gradient Recalled Echo (GRE): R2\* (= 1/T2\*)

Gandon 1994, 2004 multi-echo breathhold (Anderson et al, 2001),

# Analysis of MRI-R2 (Ferriscan®)



#### Herz-Eisen gemessen mit MRI-R2\*

#### <u>unerwartetes Ergebnis</u> 2001: Herz-Fe ≠ funkt (Leber-Fe) Anderson et al, 2001 (Royal Brompton – London)





Schwer eisenüberladener Patient hohes LIC aber normales Herz-Fe (R<sub>2</sub>\* <80s-<sup>1</sup>) milde Eisenüberladung leicht erhöhtes LIC aber hohes Herz-Fe (R<sub>2</sub>\* >80s-<sup>1</sup>)

#### Herzeisenmessung mit MRI-R2\* (T2\*) Anderson et al, 2001 (Royal Brompton – London)



Eisen in menschlichem Herzgeweben gemessen mit synchrotron- Röntgen-Fluoreszenz-Mikroskopie (XFM) und MRI-R2, -R2\*



**DBA Patient** (22y, CIC = 3.9 mg/g<sub>d.w.</sub>, **† Herzversagen**, Pneumie)

House et al. Journal of Cardiovascular Magnetic Resonance 2014 16:80.

# Patient mit ß-Thalassämia major, Messungen mit SQUID-Biomagnetometer



#### Erhöhtes Herz-Fe (R2\* > 40/50 s<sup>-1</sup>) ist zu erwarten im Alter > 10 J in DBA (ähnlich bei TDT, *Wood et al, 2011; Yang et al, 2014*), nicht bei SIC und selten bei HHC



#### Pankreas-Fe mit MRI-R2\* aus $T_2$ -gewichteten transversal slices (5.5 mm)



Normal: LIC =  $180 \mu g/g_{liver}$ 

pančreas tail

HbE/thal: LIC = 2270  $\mu$ g/g<sub>liver</sub>

#### Analyse von Pankreas-Fe mit MRI-R<sub>2</sub>\*



<u>Normal:</u> Pankreatische aFC<sup>\$</sup> = 5 ± 2 % LIC (BLS) = 147  $\mu$ g/g<sub>liver</sub> Leber R<sub>2</sub><sup>\*</sup> = 30 s<sup>-1</sup>, Herz R<sub>2</sub><sup>\*</sup> = 28 s<sup>-1</sup>

**<u>SBA</u>:** Pankreatische aFC<sup>§</sup> =  $35 \pm 4 \%$ LIC (BLS) = 1847 µg/g<sub>liver</sub> Leber R<sub>2</sub>\* = 95 s<sup>-1</sup>, Herz R<sub>2</sub>\* = 99 s<sup>-1</sup>

*\$)* **aFC = apparent fat content** from fat-water chemical shift relaxometry

#### Die Eisenspeicherung beginnt im exokrinen Pankreas



Pfeifer et al: JMRI 2014

# Eine pankreatische Steatosis ist mehr als eine harmlose Begleiterscheinung bei Eisenüberladungserkrankungen?

(Smits&Geenen, 2011)  $\rightarrow$  Beginn exokrine Dysfunktion bei Fettgehalt > 90%!



→ Korrelation zwischen Pankreas-R2\* und Herzseptum-R2\* (r<sub>s</sub>= 0.64, p = 10<sup>-4</sup>). (Grenzlinien für normales Herz-Eisen in Kontrollen (R2\* < 40 s-1) und Risiko für Pankreas-Fe bei R2\* > 100 s<sup>-1</sup> (*Noetzli et al, Blood 2009*)



Pfeifer et al: JMRI 2014

Pancreatic exocrine function predicts cardiac iron loading in iron overload: Yamamura J, <u>Grosse R</u>, et al. Pediatr Blood Cancer 2011;57:674–676.



MRI-R2\* im Vertebralen Knochenmark (VBM) transverse slice at T12-L1: 10 mm, TE=4.78 ms



multi-purpose MRI-GRE breathhold sequence (TE = 1.3 - 25.7 ms for simultaneous iron assessment in liver, marrow, spleen: localization by midvertebral 10 mm slice



Normal (23 y)



Rai

MDS (24 y)



water-fat shift by 217 Hz off proton resonance (65 MHz)! Eisenquantifizierung in der Hypophyse (Zusammenhang mit Hypogonadismus?



MRI-R2 is the adequate method for pituitary iron measurement due to the pituitary-air interface.

# Zusammenfassung

- Das Leber-Fe kann nichtinvasiv mit SQUID und MRT präzise gemessen werden und bringt Basisinformationen über Grad der individuellen Eisenspeicherung und Effizienz der Chelator-Therapie (Biopsie ist für diesen zweck out)
- MRT-R2/R2\* Fe-Messungen können in Leber, Herz, Pankreas, Knochenmark, Hypophyse, Niere, Schilddrüse, Nebenniere durchgeführt werden
- Wasser/Fett-shift Relaxometrie kann die evtl. klinisch bedeutsame Fettinfiltration in Pankreas und Knochenmark aufzeigen und zusätzliche Information bringen
- Zukünftige Messungen mit 3D-MRI data acquisition bei 3.0 Tesla werden schneller, sensitiver und artefakt-ärmer sein, aber der Flaschenhals bleibt die komplexe Auswertung

# Early expert of iron metabolism

Iron overload?

Iron deficiency anemia

# **Albrecht Dürer**

"Adam und Eva 1507"

# www.eiseninfo.de

nielsen@uke.de



