Störungen des Folsäure-Stoffwechsel

Thomas Opladen
Zentrum für Kinder- und Jugendmedizin Heidelberg
Sektion für Neuropädiatrie und Stoffwechselmedizin
Im Neuenheimer Feld 430
D-69120 Heidelberg
Folate (Vitamine B9)

- Early 1930: Treatment of megaloblastic anaemia with liver and brewers yeast
- 1941: Extraction from 4 tons of spinach
- Folium = Leaf
- Sources
 - Vegetables
 - Grains
 - Nuts
 - Brewers yeast
Folates

• Play an essential role in one-carbon methyl transfer reaction

• Involved in
 – DNA synthesis
 – Regulation of gene expression
 – Amino acid metabolism
 – Purine/pyrimidine synthesis

• Folic acid: Synthetic form used in supplements and fortified food

• Biologically active folic acid derivatives are generally 5,6,7,8-tetrahydrofolates
5-Methyldtetrahydrofolate (5MTHF)

- Transported across the mucosa of the small intestine and the choroid plexus
- Widely distributed in bloodstream
Folate metabolism

- PCFT
- FOLR1

5MTHF Transport

Transport across intestinal mucosa and choroid plexus

Steinfeld 2014; in Hoffmann, Blau Congenital Neurotransmitter Disorders – A clinical approach
Inherited disorder of folate metabolism

With anaemia and neurological symptoms

- Hereditary folate malabsorption (or Proton-coupled folate transporter deficiency)
- Dihydrofolate reductase deficiency
Hereditary folate malabsorption
Hereditary folate malabsorption

- Defect of proton coupled folate transporter PCFT (SLC46A1)
- PCFT defect results in **systemic folate deficiency** and **disturbed folate transport** into the central nervous system

Clinical findings:
- Early presentation!
- Poor feeding and failure to thrive around 2 months of age
- Megaloblastic anemia (partly pancytopenia)
- Signs of humoral and cellular immunodeficiency (SCID-like)
- Neurologic usually later, including developmental delays, cognitive and motor impairment, behavioral abnormalities, ataxia and other movement disorders, peripheral neuropathy, and seizures
- Cortex or basal ganglia calcifications

Qiu et al; *Cell* 2006
Zhao et al; *Blood* 2007
Hereditary folate malabsorption II

- Biochemical findings

<table>
<thead>
<tr>
<th>Folate (Serum)</th>
<th>5MTHF (CSF)</th>
<th>Blood count</th>
<th>Homocysteine (Plasma)</th>
<th>Methionine (Plasma)</th>
<th>MRI/CCT</th>
</tr>
</thead>
</table>

Folate, 5MTHF, blood count, homocysteine, and methionine are biochemical markers, while MRI/CCT may show changes such as megaloblastic anemia and calcification in the cortex or basal ganglia.
Hereditary folate malabsorption III

- **Treatment & Outcome**
 - 5-formyl-THF (= folinic acid 10-20 mg/kgBW)
 - i.m./i.v.?
 - NO Folic acid!
 - Prognosis regarding neurological symptoms difficult
Dihydrofolate reductase deficiency
Dihydrofolate reductase deficiency

- DHFR catalyzes the NADPH-dependent conversion of dihydrofolate to tetrahydrofolate
- Major target of methotrexate
REPORT

Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

Holger Cario,¹,* Desirée E.C. Smith,² Henk Blom,² Nenad Blau,³,⁴,⁵ Harald Bode,¹ Karlheinz Holzmann,⁶ Ulrich Pannicke,⁷ Karl-Peter Hopfner,⁸ Eva-Maria Rump,⁹ Zuleya Ayric,¹⁰ Elisabeth Kohne,¹ Klaus-Michael Debatin,¹ Yvo Smulders,¹¹ and Klaus Schwarz⁷,⁹
Dihydrofolate reductase deficiency II

- **Clinical findings:**
 - Infantile onset with failure to thrive
 - Megaloblastic anemia
 - Secondary microcephaly
 - Neurological symptoms follow (developmental delay, central hypotonia with poor head control, inability to fix and follow, and frequent focal seizures)
 - Brain MRI with cerebellar and cerebral atrophy thin corpus callosum and poor myelination of white matter.

Cario et al.; Am. J. Hum. Genet. 2011
Banka et al; Am. J. Hum. Genet. 2011
Dihydrofolate reductase deficiency III

• Biochemical findings

<table>
<thead>
<tr>
<th>Folate (Serum)</th>
<th>5MTHF (CSF)</th>
<th>Blood count</th>
<th>Homocysteine (Plasma)</th>
<th>Methionine (Plasma)</th>
<th>MRI/CCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>↓ (< 5 nM)</td>
<td>Megaloblastic anemia</td>
<td>normal</td>
<td>normal</td>
<td>Hypomyelination, thin corpus callosum, brain atrophy</td>
</tr>
</tbody>
</table>

• Treatment & Outcome
 – 5-formyl-THF (= folinic acid 5-10 mg/kgBW)
 – i.m./i.v.?
 – NO Folic acid!

 – Prognosis regarding neurological symptoms difficult
 – Seizures!
5,10-Methylenetetrahydrofolate Reductase Deficiency
MTHFR deficiency

Folsäure → Tetrahydrofolsäure

Glycin → N5,N10-Methylentetrahydrofolsäure

N5-Methyltetrahydrofolsäure

Vitamin B12 → Methionin

S-Adenosylmethionin → Methylierungsreaktionen

Betain → S-Adenosylhomocystein

Homocystein → Serin

CBS → Cystathionin

CTH → Homoserin

Cystein → Sulfit

SO → Sulfat
MTHFR deficiency

- **Clinical findings:**

 Onset and severity of symptoms vary significantly!

 - **Neonatal form:**
 - Infantile spasms
 - Developmental delay
 - Motor and gait abnormalities, incoordination, paresthesias
 - Stroke

 - **Adult-onset**
 - Combination of progressive spastic paraparesis and polyneuropathy
 - Varibly behavioral changes & cognitive impairment
 - Seizures
 - Leukoencephalopathy
MTHFR deficiency

- Biochemical findings

<table>
<thead>
<tr>
<th>Folate (Serum)</th>
<th>5MTHF (CSF)</th>
<th>Blood count</th>
<th>Homocysteine (Plasma)</th>
<th>Methionine (Plasma)</th>
<th>MRI/CCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabel/↓</td>
<td>↓</td>
<td>normal</td>
<td>↑↑</td>
<td>↓↓</td>
<td>Periventricular demyelination, Hydrocephalus</td>
</tr>
</tbody>
</table>
MTHFR deficiency

- **Treatment & Outcome**
 - **Betaine** neonates and infants 100–250 mg/kg/day; children and adults, 6–9 g/day; three divided doses
 - **Folinic acid** orally 15 mg/d
 - **Hydroxycobalamin** 0.5–1 mg orally or 1 mg IM monthly
 - **Methionine** orally 40–50 mg/kg/day
 - **Vitamin B6** orally 100–250 mg/day
Cerebral Folate (Transport) Deficiency
Cerebral Folate (Transport) Deficiency
Folate receptor alpha (FRα) deficiency

• Severe decreased 5MTHF concentration in CSF
• Pathogenic mutation in FOLR1 gene

• Clinical findings:
 – Symptomatic in late infancy (increased expression of FRβ?)
 – Developmental regression
 – Short drop attacks then myoclonic epileptic seizures
 – Ataxia, truncal hypotonia and lower limb spasticity
 – Autistic-like behavior

 – MRI: delayed myelination and cerebellar and/or cerebral atrophy
 – MRS: low concentration of inositol and choline in the cerebral white matter

Cario et al; Neurology 2009
Folate receptor alpha (Frα) deficiency

- **Biochemical findings**

<table>
<thead>
<tr>
<th>Folate (Serum)</th>
<th>5MTHF (CSF)</th>
<th>Blood count</th>
<th>Homocysteine (Plasma)</th>
<th>Methionine (Plasma)</th>
<th>MRI/CCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>▼</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>delayed myelination, cerebellar and cerebral atrophy, low concentration of inositol and choline</td>
</tr>
<tr>
<td>(< 5 nM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Treatment & Outcome**
 - 5-formyl-THF (= folinic acid 5-10 mg/kgBW)
 - Neurological symptoms = 50-100 mg i.v. 1 x/week
 - NO Folic acid!
 - Early treatment is mandatory
<table>
<thead>
<tr>
<th></th>
<th>Folate (Serum)</th>
<th>5MTHF (CSF)</th>
<th>Blood count</th>
<th>Homocysteine (Plasma)</th>
<th>Methionine (Plasma)</th>
<th>MRI/CCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCFT</td>
<td>↓</td>
<td>↓ (< 5 nM)</td>
<td>Megaloblastic anemia</td>
<td>↑</td>
<td>↓</td>
<td>Cortex or basal ganglia calcification</td>
</tr>
<tr>
<td>DHFR</td>
<td>normal</td>
<td>↓ (< 5 nM)</td>
<td>Megaloblastic anemia</td>
<td>normal</td>
<td>normal</td>
<td>Hypomyelination, thin corpus callosum, brain atrophy</td>
</tr>
<tr>
<td>MTHFR</td>
<td>Variable /↓</td>
<td>↓ (< 5 nM)</td>
<td>normal</td>
<td>↑↑</td>
<td>↓↓</td>
<td>Periventricular demyelination, Hydrocephalus</td>
</tr>
<tr>
<td>FRα</td>
<td>normal</td>
<td>↓ (< 5 nM)</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>delayed myelination, cerebellar and cerebral atrophy, low concentration of inositol and choline</td>
</tr>
</tbody>
</table>