

UniversityHospital Heidelberg

Störungen des Folsäure-Stoffwechsel

Thomas Opladen

Zentrum für Kinder- und Jugendmedizin Heidelberg Sektion für Neuropädiatrie und Stoffwechselmedzin Im Neuenheimer Feld 430 D-69120 Heidelberg

Folate (Vitamine B9)

- Early 1930: Treatment of megaloblastic anaemia with liver and brewers yeast
- 1941: Extraction from 4 tons of spinach
- Folium = Leaf
- Sources
 - Vegetables
 - Grains
 - Nuts
 - Brewers yeast

Folates

- Play an essential role in one-carbon methyl transfer reaction
- Involved in
 - DNA synthesis
 - Regulation of gene expression
 - Amino acid metabolism
 - Purine/pyrimidine synthesis

- Folic acid: Synthetic form used in supplements and fortified food
- Biologically active folic acid derivatives are generally 5,6,7,8tetrahydrofolates

5-Methyltetrahydrofolate (5MTHF)

- Transported across the mucosa of the small intestine and the choroid plexus
- Widely distributed in blood stream

N⁵-Methyl-Tetrahydrofolate = 5-Methyl-THF $H_2N \rightarrow H_{N} \rightarrow$

Folate metabolism

Inherited disorder of folate metabolism

With anaemia and neurological symptoms

- Hereditary folate malabsorption (or Proton-coupled folate transporter deficiency)
- Dihydrofolate reductase deficiency

Hereditary folate malabsorption

Hereditary folate malabsorption

- Defect of proton coupled folate transporter PCFT (SLC46A1)
- PCFT defect results in systemic folate deficiency and disturbed folate transport into the central nervous system

• Clinical findings:

- Early presentation!
- Poor feeding and failure to thrive around 2 months of age
- Megaloblastic anemia (partly pancytopenia)
- Signs of humoral and cellular immunodeficiency (SCID-like)
- Neurologic usually later, including developmental delays, cognitive and motor impairment, behavioral abnormalities, ataxia and other movement disorders, peripheral neuropathy, and seizures
- Cortex or basal ganglia calcifications

Hereditary folate malabsorption II

• Biochemical findings

Folate (Serum)	5MTHF (CSF)	Blood count	Homocysteine (Plasma)	Methionine (Plasma)	MRI/CCT

Hereditary folate malabsorption III

- Treatment & Outcome
 - 5-formyl-THF (= folinic acid 10-20 mg/kgBW)
 - i.m./i.v.?
 - NO Folic acid!
 - Prognosis regarding neurological symptoms difficult

Dihydrofolate reductase deficiency

Dihydrofolate reductase deficiency

- DHFR catalyzes the NADPH-dependent conversion of dihydrofolate to tetrahydrofolate
- Major target of methotrexate

REPORT

Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

Holger Cario,^{1,*} Desirée E.C. Smith,² Henk Blom,² Nenad Blau,^{3,4,5} Harald Bode,¹ Karlheinz Holzmann,⁶ Ulrich Pannicke,⁷ Karl-Peter Hopfner,⁸ Eva-Maria Rump,⁹ Zuleya Ayric,¹⁰ Elisabeth Kohne,¹ Klaus-Michael Debatin,¹ Yvo Smulders,¹¹ and Klaus Schwarz^{7,9}

Dihydrofolate reductase deficiency II

• Clinical findings:

- Infantile onset with failure to thrive
- Megaloblastic anemia
- Secondary microcephaly
- Neurological symptoms follow (developmental delay, central hypotonia with poor head control, inability to fix and follow, and frequent focal seizures)
- Brain MRI with cerebellar and cerebral atrophy thin corpus callosum and poor myelination of white matter.

Dihydrofolate reductase deficiency III

• Biochemical findings

Folate (Serum)	5MTHF (CSF)	Blood count	Homocysteine (Plasma)	Methionine (Plasma)	MRI/CCT
normal	↓ (< 5 nM)	Megaloblastic anemia	normal	normal	Hypomyelin- isation, thin corpus callosum, brain atrophy

- Treatment & Outcome
 - 5-formyl-THF (= folinic acid 5-10 mg/kgBW)
 - i.m./i.v.?
 - NO Folic acid!
 - Prognosis regarding neurological symptoms difficult
 - Seizures!

5,10-Methylenetetrahydrofolate Reductase Deficiency

• Clinical findings:

Onset and severity of symptoms vary significantly!

- <u>Neonatal form:</u>
 - Infantile spasms
 - Developmental delay
 - Motor and gait abnormalities, incoordination, paresthesias Stroke

<u>Adult-onset</u>

Combination of progressive spastic paraparesis and polyneuropathy Variably behavioral changes & cognitive impairment Seizures Leukoencephalopathy

• Biochemical findings

Folate (Serum)	5MTHF (CSF)	Blood count	Homocysteine (Plasma)	Methionine (Plasma)	MRI/CCT
Variabel/↓	↓ (< 5 nM)	normal	^	$\downarrow\downarrow$	Periventricular demyelination, Hydrocephalus

• Treatment & Outcome

- <u>Betaine</u> neonates and infants 100–250 mg/kg/day; children and adults, 6–9 g/day; three divided doses
- Folinic acid orally 15 mg/d
- <u>Hydroxycobalamin</u>0.5–1 mg orally or 1 mg IM monthly
- <u>Methionine</u> orally 40–50
 mg/kg/day
- <u>Vitamin B6</u> orally 100–250 mg/day

Cerebral Folate (Transport) Deficiency

Cerebral Folate (Transport) Deficiency

Folate receptor alpha (FRα) deficiency

- Severe decreased 5MTHF concentration in CSF
- Pathogenic mutation in FOLR1 gene

• Clinical findings:

- Symptomatic in late infancy (increased expression of FRß?)
- Developmental regression
- Short drop attacks then myoclonic epileptic seizures
- Ataxia, truncal hypotonia and lower limb spasticity
- Autistic-like behavior
- MRI: delayed myelination and cerebellar and/or cerebral atrophy
- MRS: low concentration of inositol and choline in the cerebral white matter

Folate receptor alpha (Fra) deficiency

Biochemical findings

Folate (Serum)	5MTHF (CSF)	Blood count	Homocysteine (Plasma)	Methionine (Plasma)	MRI/CCT
normal	↓ (< 5 nM)	normal	normal	normal	delayed myelination, cerebellar and cerebral atrophy, low concentration of inositol and choline

- Treatment & Outcome
 - 5-formyl-THF (= folinic acid 5-10 mg/kgBW)
 - Neurological symptoms = 50-100 mg i.v. 1 x/week
 - NO Folic acid!
 - Early treatment is mandatory

UniversityHospital Heidelberg

	Folate (Serum)	5MTHF (CSF)	Blood count	Homocysteine (Plasma)	Methionine (Plasma)	MRI/CCT
PCFT	↓	→ (< 5 nM)	Megaloblastic anemia	1	↓	Cortex or basal ganglia calcification
DHFR	normal	→ (< 5 nM)	Megaloblastic anemia	normal	normal	Hypomyelin-isation, thin corpus callosum, brain atrophy
MTHFR	Variabel /↓	↓ (< 5 nM)	normal	↑↑	$\downarrow\downarrow$	Periventricular demyelination, Hydrocephalus
FRα	normal	↓ (< 5 nM)	normal	normal	normal	delayed myelination, cerebellar and cerebral atrophy, low concentration of inositol and choline

Thank you!

