Haploidente HSCT bei Sichelzellkrankheit

Selim Corbacioglu Regensburg, Germany

Hemoglobinopathies are the largest patient population with an absolute indication for SCT

5% of the world's population are healthy carriers of a gene for sickle-cell disease or thalassaemia.

Hemoglobinopathies

Severe Thalassemia

- >100.000 new children are born each year in Middle east and South-Asia
- Global disease burden ~ 1 million
- In spite of advances in supportive care the majority may not live beyond age 20 years

Mission

Cure2Children (C2C) is a non-profit, apolitical, and secular organization providing support for the care of children with cancer and severe blood disorder in developing countries.

Events Pakistan-C2C 2 deaths: at 14 days (sepsis) and 10 months (graft failure/sepsis)

Cost of supportive care vs. SCT

Cost of supportive therapy for Thalassaemia

Total cost per year	3.000 USD
Miscellaneous expenditures	100 USD
Investigations	100 USD
Chelation	2.000 USD
Blood transfusions	800 USD

Cost of BMT for Thalassaemia

BMT in Pakistan

15.000 USD BMT in Italy (120.000 USD)

The cost of BMT is equivalent to a few years of supportive therapy!

Hemoglobinopathies

Sickle cell disease (SCD)

- Over 300 000 newborns with severe forms of SCD, the majority in low and middle income countries.
- Mortality rate 50-80% within first 5 years of age due to infection complication

Major Complications of SCD patients

- Asplenia
 - Splenic sequestration, infectious risk
- Vaso-occlusive crisis
 - Pain
- Acute chest syndrome
 - Mortality risk
 - Chronic lung disease/pulm. artery HTN
- Recurrent priapism
- Osteonecrosis, Osteomyelitis
- Sickle-Nephropathy
- Cerebral vasculopathy
 - 50% risk at 14yrs
 - Overt strokes (11% <20yrs., 24% <45yrs)</p>
 - Silent strokes, cognitive deficiency

Orah Platt NEJM 2000

Standard medical care of SCD

- Parental training
- Immunizations (incl. Meningo-/Pneumocci)
- Penicillin-Prophylaxis
- Aggressive antibiotic management
- Oxygen and pain management
- Transfusions
- Hydroxyurea
- TCD screening
- Neuro-cognitive testing

Detection of patients at risk of stroke

- TAMMX* velocities
 - Normal < 170 cm/sec</p>
 - Conditional: 170-199 cm/sec
 - Abnormal ≥ 200 cm/sec

- Velocities ≥ 200 cm/sec: predictive of a 40% stroke risk within 3 years
- Risk reduced to 2% when velocities are normal (< 170 cm/sec)</p>

*Time-averaged mean of maximum velocities (TAMMX)

Adams et al ; NEJM 1992 and Ann Neurol 1997

Irritating facts in stroke prevention...

- Aggressive cTF programs can reduce stroke (Adams, et al, STOP-I trial, NEJM 1998)
- But only when continued (Adams, et al, STOP-II trial, NEJM 2005)
- HbS levels below 30% does not abolish completely the risk of recurrent strokes (Pegelow et al, J. Pedtr., 1995)
- Radiologic progression of vascular lesions not influenced by cTF (Brousse et al, 2005, Ann Hematol)

Can Hydroxyurea prevent strokes?

SWiTCH trial interrupted by DSMB!

- Multicenter randomized Phase III

<u>Results:</u>		TF/Chelation	Hydroxyurea/Phlebotomy
	Incidence of stroke	0%	10%
	Liver iron content	Equivalent!	

Allogeneic SCT is the only definitive cure for SCD...

Allogeneic SCT is the only definitive cure for SCD

• Things to consider:

- TRM
- GvHD
- Graft rejection in heavily transfused patients
- PRES and other cerebral vascular complications
- VOD in liver fibrosis/hepatic siderosis
- Nephropathy
- Infertility

Promising results in SCT with geno-identical donors

Indication: symptomatic young sickle cell patients Donor: geno-identical donor Conditioning: Myeloablative conditioning regimen

- Iv Busulfan (BU)
- Cyclophosphamide (CY) 200 mg/kg
- Rabbit ATG 10-20 mg/kg
- TRM (n=6) was primarily related to GVHD (n=4) and not to conditioning
- Chance of cure of at least of 95% since 2000 (n=147)

Bernaudin et al. Blood 2007

Outcome of arterial velocities

 Significantly reduced TAMMX 1 year after transplant in 49 assessable patients (p<0.001)

What are our expectations from a successful SCT in SCD?

- Conditioning regimen
 - Non-toxic
 - Immunosuppressive
 - Myeloabative (?)
- Immediate donor availability
- Quick and sustained engraftment
- Low TRM

What if a MSD or MUD donor is not available?

Haploidentical SCT

Pro's

- Immediate donor availibility (average 2,7/patient)
- High cell dose
- Low GvHD rate
- Fast neutrophil and PLT engraftment

Con's

- Delayed immune reconstitution (?)
- High risk for TRM (?)
- High rate of graft rejection and GvhD (?)
- Expense (?)

Haploidentical SCT, 2014

- Major developments in the last years
 - CD34 pos. Selection ("Megadose": >1x10⁶ CD34), 1995
 - CD3/CD19 depleted SCT, 2003
 - $-\alpha/\beta$ depleted SCT, 2010
 - Post-SCT Cyclophosphamide, 2010 (1963)
 - CD45RA depleted SCT, 2015 (?)
 - Post-SCT Cyclophosphamide + T cell depletion

Graft versus Host Disease in Haplo-SCT?

- CD34+:
 - Grades II-IV acute GVHD 11%
 - Grades II-IV chronic GVHD 14%
- CD3/CD19 depleted:
 - Grades II-IV acute GVHD 46%
 - Grades II-IV chronic GVHD 18%

• α/β depleted:

- Grades I-II aGvHD skin only in 26% (n=50)
- Limited cGvhD (skin only) in 4%
- Post SCT Cy:
 - 100-day cumulative incidence of grade aGVHD II-IV : 32%

Brunstein et al, Blood, 2011

Ciceri F, Blood, 2008

Federmann B, Haematologica, 2011

Bertaina et al, EBMT 2014, PH-O106

Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia

- N=46
- Conditioning: Flu (Clo), TT, Mel, ATG
- Graft: CD3/CD19 depleted (CliniMACS)
- Results:
 - Fngraftment Rate: 87%

Incidence of a/cGvhD in haplo-SCT is low

- No aGvHD in 48%
- Grade 1 aGvHD in 26%
- Grade 2 aGvHD in 19,5%
 - Grade 3 & 4 aGvHD in 6,5% (II IV: 26%)
- Chronic GvHD:
 - Overall in 21%
 - Limited disease in 9%
 - Extensive disease in 11%

Incidence of acute GvHD (Day+100) in allogeneic HSCT recipients Defibrotide prevention trial (prospective, controlled, randomized)

Day+100 Incidence aGvHD grades II-IV	Control arm N = 117
Graft from Mismatched donors	11/31 (35.5%)
Graft from Matched donors	32/86 (37.2%)
Graft from Mismatched Unrelated donors	5/21 (23.8%)
Graft from Matched Unrelated donors	20/61 (32.8%)

Corbacioglu et al, Lancet 2012

Comparability of OS, DFS, Relapse between MRD, MSD and Haplo?

PT SCT Cy	MRD (n=115)	MUD (n=99)	Haplo (n=45)
OS at 36 months (%)	71	58	58
DFS at 36 months (%)	47	46	55
Inicidence of relapse (%)	35	38	36

Bashey, et al Blood 2011

Progress in 5-yrs survival

Leung W et al., Blood 2011

Expenses?

Post-transplant Cyclophosphamide PT-CY

Double unrelated cord blood vs. haploidentical BM?

Results of 2 parallel phase 2 trials (adult leukemia/lymphoma pts)

RIC: Flu, Cy, 200TBI

	1-yr non- relapse mortality	d100 II-IV GVHD	Median ANC recovery (>500)	Median plt recovery (>20K)	Graft failure	Stem cell source cost
<u>dUCB</u> (50 pts)	24%	40%	d15	d30	12%	>60K USD
<u>Haplo BMT</u> (50 pts)	7%	32%	d16	d24	2%	0

Brunstein et al. *Blood* 2011;118:282

PT-CY or CD34+ SCT?

	PT-CY (n=32)	TCD (n=33)
Engraftment Rate	94%	81%
Non-Relapse Mort.	16%	42%
OS	64%	30%
PFS	50%	30%
aGvHD II-IV	20%	11%
cGvHD	7%	18%

N=65 adult pts. with hem. malignancies

• Excellent immune reconstitution with PT-CY

Ciurea et al, Biol Blood Marrow Transplant. 2012

Prospects

Partially matched related (haploidentical) SCT for SCD

	Mortality	III-IV GVHD	Graft failure
PT-CY BMT	0%	0%	43%
(14 pts: 15-42 yrs)	070	070	-370

Bolanos-Meade et al. Blood 2012;118:282

Haploidentical SCT, 2013-14

- 100% Donor availability
- Low incidence of GvHD
- Comparable incidence of OS, DFS, RR
- Simplified access to SCT procedures
 - PT-Cy with BM
 - CliniMACS Prodigy[®] cell separation system (Miltenyi)

The donor selection process: Is it time for a change?

Type of donor	Chance
1. Matched sibling donor, 8/8 or 10/10	25%
2. Mismatched related (haploidentical) donor	≈100%
3. Matched unrelated donor, 10/10, 9/10	50% - 0%
4. Cord Blood	50% - 0%

Delayed SCT due to lack of a suitable donor increases risk of

- TRM
- GvHD
- Graft rejection in heavily transfused patients
- Complications assoc. with vasculopathy
 - PRES and other cerebral vascular complications
 - VOD in liver fibrosis/hepatic siderosis
 - Nephropathy and other complications of cont. conservative care

German SCD Transplant Registry

Tasks:

Collect all German SCD SCT activity in one database

- Donor selection
- Indications
- Conditioning
- Immunosuppression
- Chimerism

Collect all SCT related complications

- Rejection
- TRM
- GvHD
- Neurological Complications (PRES et al)
- VOD
- Fertility
- Et al

"Die normative Kraft des Faktischen"

G. Jellinek (1851-1911)

