

Die Sauerstoff-abhängige Regulation der Erythropoiese

Christof Dame

Klinik für Neonatologie Charité - Universitätsmedizin Berlin

christof.dame@charite.de

Erythropoietin (Epo) und sein Rezeptor (EpoR) in der Hämatopoiese

e11.5

Wu H. et al., Cell 1995

Erythropoietin (Epo) und sein Rezeptor (EpoR) in der Hämatopoiese

Epo-Synthese 1

Plasma ↑

Erythropoiese 1

HÄMATOLOGIE HEUTE

Auswirkung der *Epo-/-* Ablation auf die Blutbildung

Wu H. et al., Cell 1995, 83:59-67

Frühe Phasen der Erythropoietin-Synthese

Dottersack e10

Yasuda Y et al.,

Anatom Sci Internat; 2002; 77:58-63

Leber hEpo overexpressing mouse

HAMATOLOGIE HEUTE

Koury ST *et al.*, Blood 1991; 77:2497-2503

Erythropoietin-Synthese in der Niere

hEpo SV40T Mutante, unter Anämie

Maxwell PH et al., Kidney International 1993; 44:1149-1162

SV40T

F: Interstitial fibroblast-like cell R: Monocyte-like cell P: Proximal tubules Ca: Capillaries

Mausmutante mit Expression von green fluorescent protein (GFP) unter Kontrolle des murinen Wildtyp Epo Gens

Obara N. et al., Blood 2008; 111:5223-32

Mausmutante mit Expression von green fluorescent protein (GFP) unter Kontrolle des murinen Wildtyp Epo Gens

Obara N. et al., Blood 2008; 111:5223-32

Mausmutante mit Expression von green fluorescent protein (GFP) unter Kontrolle des murinen Wildtyp Epo Gens

Obara N. et al., Blood 2008; 111:5223-32

Mausmutante mit Expression von green fluorescent protein (GFP) unter Kontrolle des murinen Wildtyp Epo Gens

REPC exprimieren Neuronen-spezifische Markerproteine, u.a. *microtubule-associated protein 2* und *neurofilament light polypeptide*

HÄMATOLOGIE HEUTE

Obara N. et al., Blood 2008; 111:5223-32

Wechsel der primären Epo-Synthesestätte während der Entwicklung

Dame C.. In Dame, Fliedner, Sola-Visner, Yoder: Atlas of the Cellular and Molecular Development of Human Hematopoiesis, 2013

Der humane Epo Genlocus

Dame C.. In Dame, Fliedner, Sola-Visner, Yoder: Atlas of the Cellular and Molecular Development of Human Hematopoiesis, 2013

Das Hypoxia Response Element (HRE) im Epo 3' Enhancer

Der Hypoxia Inducible Factor 2α (HIF- 2α) bindet am Epo 3' Enhancer der REPC

Epo mRNA Epo mRNA

Hif- 2α

Hif-1 α

Epo mRNA

Hif-1 α

Paliege A et al., Kidney International 2010; 77:312-318

Aktivierung der Epo-Synthese in REPC unter Hypoxie

Normoxie

HÄMATOLOGIE HEUTE Wenger RH, Hoogewijs D. Am J Physiol Renal Physiol 2010;298:F1287-F1296

Dienstag, 7. Mai 13

UI M

Regulierung der Stabilität von HIF

Prolyl-Hydroxylierung von HIF

Dienstag, 7. Mai 13

ULM

Funktion der PHD und FIH regulierenden Proteine

Interactor	Target	Putative function
Protein stability		
Siah1a/2	PHD1/3	PHD degradation
Siah1	FIH	FIH degradation
FKBP38	PHD2	PHD degradation
TriC	PHD3	Chaperonin
Scaffolding proteins		
mAKAP12	PHD2/3	Molecular scaffold
ING4	PHD2	HIF-α inhibition
OS-9	PHD2/3	Molecular scaffold
MAGE-9/11	PHD2	PHD inhibition
Morg1	PHD3	Molecular scaffold
Importin-α5	PHD1	Nuclear import
CRM1	PHD2	Nucelar export
Mint3/ABPA3	FIH	FIH inhibition
VHL	FIH	HIF- α inhibition
Cdr2	PHD1	HIF- α inhibition
IOP1	PHD2	Induction of HIF-1 α mRNA

Humane PHD2 Mutationen (GoF)

Dienstag, 7. Mai 13

UL M

Humane *HIF-2*α Mutationen (GoF)

Epo in Relation zum verfügbaren O₂

Die besondere Situation beim Frühgeborenen

Dallman PR, J Pediatr 1984; 105:756-7

Dienstag, 7. Mai 13

II M

Gewebespezifische Regulation der Epo mRNA Expression

® Wechsel der Epo-Synthese von der Leber zur Niere

Gewebespezifische Regulation der Epo mRNA Expression

Chikuma M. et al., Am J Physiol Endocrinol Metab 2000

Gupta M. et al., Blood. 2000; 96:491-7; Sanchez-Elsner T. et al., J Mol Biol. 2004; 336:9-24

Gupta M. et al., Blood. 2000; 96:491-7; Sanchez-Elsner T. et al., J Mol Biol. 2004; 336:9-24

GATA4 induziert die *Epo* mRNA Expression in Hepatozyten (Hep3B Zellen)

HÄMATOLOGIE HEUTE

Dame et al., J Biol Chem, 2004; 279: 2955-61

HÄMATOLOGIE HEUTE

Alberta JA. et al., Blood. 2003; 101: 2570-4

Aktivierung des *Epo* Promotors und Induktion der *Epo* Expression durch Wt1

HÄMATOLOGIE HEUTE

Normalized luziferase activity

Aktivierung des *Epo* Promotors und Induktion der *Epo* Expression durch Wt1

Dame C, et al. Blood, 2006, 107:4285-90

Aktivierung des *Epo* Promotors und Induktion der *Epo* Expression durch Wt1

Dame C, et al. Blood, 2006, 107:4285-90

In vivo Relevanz von Wt1 für doe *Epo* mRNA Expression in der fetalen Leber

Dame C, et al. Blood, 2006, 107:4285-90

In vivo Relevanz von Wt1 für doe *Epo* mRNA Expression in der fetalen Leber

Molekulare Mechanismen der Epo Regulation

Normoxie

Dame C.. In Dame, Fliedner, Sola-Visner, Yoder: Atlas of the Cellular and Molecular Development of Human Hematopoiesis, 2013

Molekulare Mechanismen der Epo Regulation

Normoxie

Dame C.. In Dame, Fliedner, Sola-Visner, Yoder: Atlas of the Cellular and Molecular Development of Human Hematopoiesis, 2013

Reaktivierung der hepatischen *Epo* Expression mittels *EgIN* siRNA (murine PHDs)

Querbes W et al. Blood 2012;120:1916-1922

Dienstag, 7. Mai 13

III M

HÄMATOLOGIE HEUTE

Reaktivierung der hepatischen *Epo* Expression mittels *EgIN* siRNA (murine PHDs)

Reaktivierung der hepatischen *Epo* Expression mittels *EgIN* siRNA (murine PHDs)

Wirkung der HIF-Aktivierung auf den Eisen-Metabolismus

... and it's more than HIF and Epo

Colonies:

Hattangadi SM et al. Blood 2011;118: 6258-68

Danke !

Karin Kirschner, Holger Scholz

Johannes-Müller-Institut für Physiologie Charité, Berlin

Joachim Fandrey

Institut für Physiologie, Universität Duisburg-Essen

Jörg Bungert

Department of Biochemistry and Molecular Biology, University of Gainesville, FL, USA

Hans-Ulrich Bucher, Jean-Claude Fauchère

Klinik für Neonatologie Universitätsspital Zürich Deutsche Forschungsgemeinschaft American Heart Association RoFAR Fritz-Thyssen-Stiftung Wilhelm-Sander-Stiftung Sonnenfeld-Stiftung Berliner Krebsgesellschaft

